FLEXIBLE MANUFACTURING SYSTEMS (FMS)

Introduction

In the middle of the 1960s, market competition became more intense.

During 1960 to 1970 cost was the primary concern. Later quality became a priority. As the market became more and more complex, speed of delivery became something customer also needed.

A new strategy was formulated: Customizability. The companies have to adapt to the environment in which they operate, to be more flexible in their operations and to satisfy different market segments (customizability).

Thus the innovation of FMS became related to the effort of gaining competitive advantage.

First of all, FMS is a manufacturing technology.

Secondly, FMS is a philosophy. "System" is the key word. Philosophically, FMS incorporates a system view of manufacturing. The buzz word for today’s manufacturer is "agility". An agile manufacturer is one who is the fastest to the market, operates with the lowest total cost and has the greatest ability to "delight" its customers. FMS is simply one way that manufacturers are able to achieve this agility.

An MIT study on competitiveness pointed out that American companies spent twice as much on product innovation as they did on process innovation. Germans and Japanese did just the opposite.

In studying FMS, we need to keep in mind what Peter Drucker said: "We must become managers of technology not merely users of technology".

Since FMS is a technology, well adjusted to the environmental needs, we have to manage it successfully.

 

1. Flexibility concept. Different approaches

Today flexibility means to produce reasonably priced customized products of high quality that can be quickly delivered to customers.

Different approaches to flexibility and their meanings are shown Table 1.

 

Table 1
 
Approach Flexibility meaning
Manufacturing 

  

  
 

  • The capability of producing different parts without major retooling 
  • A measure of how fast the company converts its process (es) from making an old line of products to produce a new product 
  • The ability to change a production schedule, to modify a part, or to handle multiple parts
Operational
  • The ability to efficiently produce highly customized and unique products
Customer
  • The ability to exploit various dimension of speed of delivery
Strategic
  • The ability of a company to offer a wide variety of products to its customers
Capacity
  • The ability to rapidly increase or decrease production levels or to shift capacity quickly from one product or service to another
 

So, what is flexibility in manufacturing?

While variations abound in what specifically constitutes flexibility, there is a general consensus about the core elements. There are three levels of manufacturing flexibility.

 
(a) Basic flexibilities

 
(b) System flexibilities  
(c) Aggregate flexibilities  

2. Seeking benefits on flexibility

Today’s manufacturing strategy is to seek benefits from flexibility. This is only feasible when a production system is under complete control of FMS technology. Having in mind the Process- Product Matrix you may realize that for an industry it is possible to reach for high flexibility by making innovative technical and organizational efforts. See the Volvo’s process structure that makes cars on movable pallets, rather than an assembly line. The process gains in flexibility. Also, the Volvo system has more flexibility because it uses multi-skill operators who are not paced by a mechanical line.

So we may search for benefits from flexibility on moving to the job shop structures.

Actually, the need is for flexible processes to permit rapid low cost switching from one product line to another. This is possible with flexible workers whose multiple skills would develop the ability to switch easily from one kind of task to another.

As main resources, flexible processes and flexible workers would create flexible plants as plants which can adapt to changes in real time, using movable equipment, knockdown walls and easily accessible and re-routable utilities.

 

3. FMS- an example of technology and an alternative layout

The idea of an FMS was proposed in England (1960s) under the name "System 24", a flexible machining system that could operate without human operators 24 hours a day under computer control. From the beginning the emphasis was on automation rather than the "reorganization of workflow".

Early FMSs were large and very complex, consisting of dozens of Computer Numerical Controlled machines (CNC) and sophisticate material handling systems. They were very automated, very expensive and controlled by incredibly complex software. There were only a limited number of industries that could afford investing in a traditional FMS as described above.

Currently, the trend in FMS is toward small versions of the traditional FMS, called flexible manufacturing cells (FMC).

Today two or more CNC machines are considered a flexible cell and two ore more cells are considered a flexible manufacturing system.

Thus, a Flexible Manufacturing System (FMS) consists of several machine tools along with part and tool handling devices such as robots, arranged so that it can handle any family of parts for which it has been designed and developed.

 

Different FMSs levels are:

Flexible Manufacturing Module (FMM). Example : a NC machine, a pallet changer and a part buffer;

Flexible Manufacturing (Assembly) Cell (F(M/A)C). Example : Four FMMs and an AGV(automated guided vehicle);

Flexible Manufacturing Group (FMG). Example : Two FMCs, a FMM and two AGVs which will transport parts from a Part Loading area, through machines, to a Part Unloading Area;

Flexible Production Systems (FPS). Example : A FMG and a FAC, two AGVs, an Automated Tool Storage, and an Automated Part/assembly Storage;

Flexible Manufacturing Line (FML). Example : multiple stations in a line layout and AGVs.

 

4. Advantages and disadvantages of FMSs implementation

 

Advantages

 

Disadvantages

 

FMSs complexity and cost are reasons for their slow acceptance by industry. In most of the cases FMCs are favored.