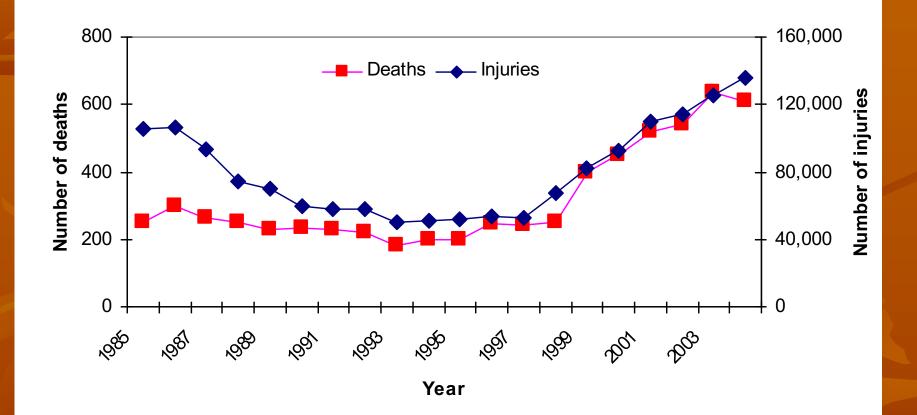


Cost-effectiveness of Wearing Head Protection on ATVs

Melvin L. Myers, Henry P. Cole, and Joan M. Mazur University of Kentucky October, 19-23, 2008 Sixth International Symposium Public Health and the Agricultural Rural Ecosystem Saskatoon, Saskatchewan

Acknowledgments

- Editorial assistance of Teresa Donovan of the University of Kentucky, College of Public Health
- Funded by NIOSH Cooperative Agreement 5U50 OH0747-04
- Human subjects review by the University of Kentucky Office of Research Integrity, IRB# 06-0557-P4S


Overview

- The ATV Injury Problem
 Prod's Lost Pide
- Brad's Last Ride
- Decision Analysis

- What is the probability of an ATV crash?
- What is the probability of a head injury from an ATV crash?
- How many injuries can be averted when a helmet is worn?
- Cost Analysis
 - What is the expected value of wearing a helmet?
 - What is the social savings associated with using a safety helmet during a crash?

The All-Terrain Vehicle (ATV) Injury Problem

Dairy farmer died 15 days after ATV rolled over him

Source: NIOSH FACE Report, 2003 WI 059

Beef farmer pinned under overturned ATV in Wisconsin

Source: NIOSH FACE Report, 2000 WI 039

Teenager drowned when pinned under an overturned ATV in a pond

Source: OSHA Investigation

Background

1970: ATVs were introduced into the US

- 2001: 5.6 million ATVs in use
- **2004**:
 - 767 ATV-related deaths: an increase from 183 (419%) in 1993
 - 136,100 emergency-room-treated injuries: an increase from 49,800 (273%) in 1993
- Number of head injuries is high
- Helmets are effective at reducing head injuries

Objective

 Determine the cost-effectiveness of wearing a helmet while driving an ATV.

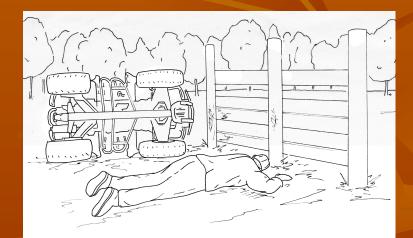
Cost (or savings) per injury averted by helmet use

Decision analysis with a decision tree to find injuries averted

- Cost-effectiveness analysis using automobile crash cost data
- Based upon a narrative used for changing the attitudes of ATV drivers
 - Similar to previous analyses based upon other narratives

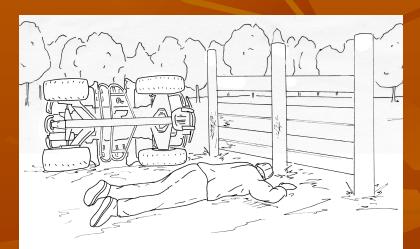
This narrative was Brad's Last Ride

 involved a youth who suffered a serious head injury as a result of an ATV collision with a fence post


Brad's Last Ride

Intervention cost

- Helmet: \$53
- 4 years adult supervision
 \$1,680/year = \$6,720
- Total: \$6,773



Questions

- What is the probability of an ATV crash?
- What is the probability of a head injury from an ATV crash?
 - Without a safety helmet
 - With a safety helmet
- How many injuries can be averted when a helmet is worn?

Decision Analysis

 Determine the increment of injuries averted during an ATV crash by comparing outcomes

wearing

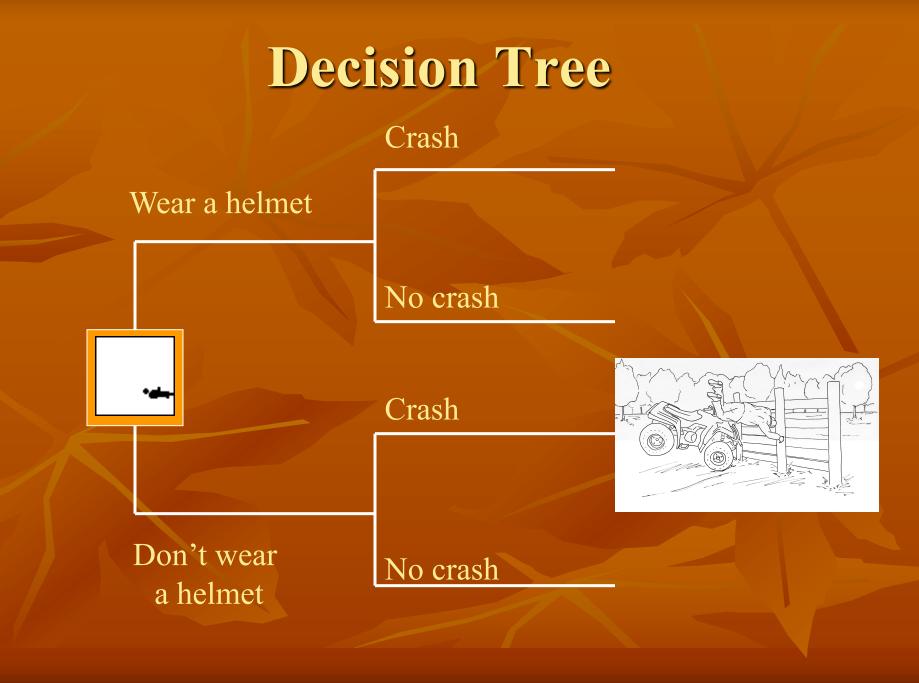
not wearing a helmet

An ATV crash

Collision with another object

An overturn

An ejection from the ATV (fall)


Decision Tree

Wear a helmet

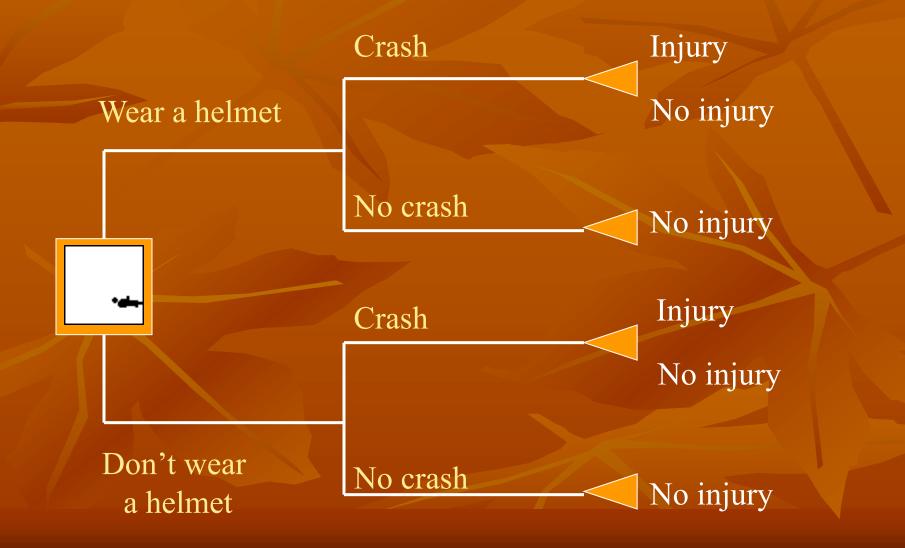
Don't wear a helmet

What is the probability of an ATV crash (per year)?

Crash

- 37.4 hospital emergency department (ED) visits per million hours (Levenson 2003)
- 252 average annual hours driving time (Rodgers 1999)
- 13.7% hospital visits/crash (Lower et al. 2005)
- Probability of a crash
 - = hospital visits + no hospital visits
 - 37.4 hospital visits (crashes) /1 million hrs * 252 hrs/yr = 0.01192
 - 0.01192 hospital visits/yr * 1/0.137 hospital visits/crash = 0.08960
 - Probability of an ATV crash per driver per year = 0.10152 (10.15%)

No crash


Crash

No injury

Injury

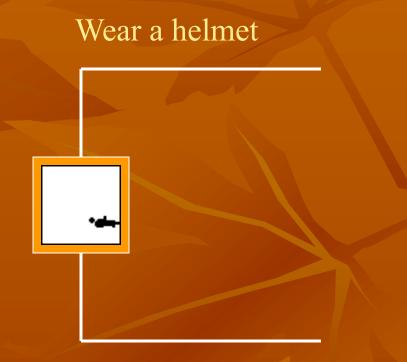
No injury

What is the probability of a head injury from a crash?

Abbreviated Injury Scale (AIS)

- 6 Untreatable
 - Death
 - e.g., Massive skull destruction
- 5 Critical
 - Loss of Consciousness (LOC): 6 to > 24 hours
 - e.g., Brain stem contusion
- 4 Severe
 - LOC: < 24 hours
 - e.g., Artery occlusion

- 3 Serious
 - LOC: < 6 hours
 - e.g., Traumatic aneurysm
- 2 Moderate
 - LOC: < 1 hour
 - e.g., Skull fracture
- 1 Minor
 - LOC: None
 - e.g., Cerebral concussion


What is the probability of a head injury from an ATV crash?

 Wear a safety helmet (Rodgers 1990)
 Fatal: risk reduced by

42%

Nonfatal: risk reduced by 64%

 Don't wear a safety helmet

Don't wear a helmet

What is the probability of a head injury from an ATV crash?

Injury

Index Value

- 577,800 ED-treated ATV injuries, 2000-2004 (Elder & Streeter 2007)
- Traumatic Brain Injury (TBI)
 - 85.4% taken to ED (Walker et al. 2004)
 - 20% of ATV-related injuries were to the head (Helmkamp et al. 2008)
- Helmet usage
 - 51.8% usage on ATVs in 1997 (Rodgers 1999)

Crash

AIS

- Death (Elder & Streeter 2007)
 - 2,753 deaths from ATV injuries, 2000-2004
- Critical (Demetriades et al. 2004)
 - 8.3% of head injuries at a trauma center
- Severe (Demetriades et al. 2004)
 - 14.4% of head injuries at a trauma center
- Serious (Demetriades et al. 2004)
 - 16.3% of head injuries at a trauma center
- Moderate (Brooks et al. 1995)
 - 67.3% of 2 through 6
- Minor (Walker et al. 2004)
 - 55.5% of head injuries/no coma

How many injuries can be averted when a helmet is worn?

Per 100,000 drivers/year

6 Untreatable	10
5 Critical	260
■ 4 Severe	452
3 Serious	511
2 Moderate	952
1 Minor	<u>883</u>
TOTAL	3,068

More Questions

- What is the expected value of wearing a helmet?
- What is the social cost or savings associated with using a safety helmet during a crash?

What is the expected value of wearing a helmet?

Cost Factors (2008 dollars)

6 Untreatable	\$4,300,140
5 Critical	\$3,069,529
4 Severe	\$934,438
3 Serious	\$401,356
2 Moderate	\$201,772
1 Minor	\$19,182
Intervention:	\$6,773

Source: Blincoe L 2002

What is the expected value of wearing a helmet?

AIS	Probability	Cost	Product*
6 Untreatable	0.000097	\$4,300,140	\$7,623
5 Critical	0.002603	\$3,069,529	\$145,859
4 Severe	0.004516	\$934,438	\$77,036
3 Serious	0.005112	\$401,356	\$37,454
2 Moderate	0.009521	\$201,772	\$35,070
1 Minor	0.008832	\$19,182	\$3,093
50-year Expected Value (includes intervention cost)			\$299,361

* 5% discount rate

What is the expected value of wearing a helmet?

Discount	Analytic Time Horizon (Includes intervention cost)		
Rate	50 years	25 years	10 years
0%	\$831,678	\$412,453	\$160,917
5%	\$299,361	\$229,569	\$122,713

What is the savings associated with using a safety helmet during a crash?

	Cost-Effectiveness		
Discount	[savings per injury averted; Includes intervention cost]		
Rate	50 years	25 years	10 years
0%	\$542,164	\$537,748	\$524,503
5%	\$534,486	\$530,915	\$517,989

Intervention Cost

Assumed cost

- Helmet price = \$53.00
- Adult supervision (4 years) = \$6,720
- Sensitivity Analysis
 - Helmet price only = \$53.00

Cost-effectiveness results (50-year horizon at 5% discount rate)

- At the assumed cost: \$546,484
- At the helmet price only: \$544,868
- A difference of 2%

References

- Blincoe L et al. *The Economic Impact of Motor Vehicle Crashes, 2000.* Report No. DOT HS 809 446. Washington, D.C.: U.S. Department of Transportation. 2002.
- Demetriades D et al. Mortality prediction of head Abbreviated Injury Score and Glasgow Coma Scale: analysis of 7,764 head injuries. *J Am Coll Surg*. 2004;199:216-222.
- Helmkamp JC et al. All-terrain vehicle-related hospitalizations in the United States, 2000-2004. Am J Prev Med. 2008;34(1):39-45.
- Ingle RL & Streeter RA. 2005 Annual Report of ATV Deaths and Injuries/Amended. Bethesda, MD: U.S. Consumer Product Safety Commission. 2007.
- Levenson MS. All-Terrain Vehicle 2001 Injury and Exposure Studies. Bethesda, MD: US Consumer Product Safety Commission. January 2003.
- Lower T et al. *Reducing all-terrain vehicle injuries: a randomized control study of the effect of driver training*. A report for the Rural Industries Research and Development Corporation. Australian Government, RIRDC Publication No. 04/174. 2005.
- Rodgers GB. The effectiveness of helmets in reducing all-terrain vehicle injuries and deaths. Accid Anal Prev. 1990;22(1):47-58. 2005.
- Rodgers GB. The characteristics and use patterns of all-terrain vehicle drivers in the United States. Accid Anal Prev. 1999;31(4):409-419.
- Walker R et al. Kentucky Traumatic Brain Injury Prevalence Study. Lexington: University of Kentucky Center on Drug and Alcohol Research Technical Report No. 2004-01, 2004.