

Chapter 9 Forecasting Techniques

Forecasting Techniques

- Managers require good forecasts of future events.
- Business Analysts may choose from a wide range of forecasting techniques to support decision making.
- Three major categories of forecasting approaches:
 - 1. Qualitative and judgmental techniques
 - 2. Statistical time-series models
 - 3. Explanatory/causal models

Qualitative and Judgmental Forecasting

- Qualitative and Judgmental techniques rely on experience and intuition.
- They are necessary when historical data is not available or when predictions are needed far into the future.
- The historical analogy approach obtains a forecast through comparative analysis with prior situations.
- The Delphi method questions an anonymous panel of experts 2-3 times in order to reach a convergence of opinion on the forecasted variable.

Example 9.1: Predicting the Price of Oil

- Early 1988 oil price was about \$22 a barrel
- Mid-1988 oil price dropped to \$11 a barrel because of oversupply, high production in non-OPEC regions, and lower than normal demand
- In the past, OPEC would raise the price of oil.
- Historical analogy would forecast a higher price.
- However, the price continued to drop even though OPEC agreed to cut production.
- Historical analogies cannot always account for current realities!

Indicators and Indexes

- Indicators are measures that are believed to influence the behavior of a variable we wish to forecast.
- Indicators are often combined quantitatively into an index, a single measure that weights multiple indicators, thus providing a measure of overall expectation.
 - Example: Dow Jones Industrial Average

Example 9.2: Economic Indicators

- GDP (Gross Domestic Product) measures the value of all goods and services produced.
 - GDP rises and falls in a cyclic fashion.
- Forecasting GDP is often done using leading indicators (series that change before the GDP changes) and lagging indicators (series that follow changes in the GDP) indicators.
- Examples
 - Leading formation of business enterprises
 - percent change in money supply (M1)
 - Lagging business investment expenditures
 - prime rate
 - inventories on hand

Example 9.3: Leading Economic Indicators

- An Index of Leading Indicators was developed by the Department of Commerce.
- This index is related to the economic performance is available from www.conference-board.org.
- It includes measures such as:
 - average weekly manufacturing hours
 - new orders for consumer goods
 - building permits for private housing
 - S&P 500 stock prices

Statistical Forecasting Models

- Time Series a stream of historical data, such as weekly sales
 - T = number of periods, t = 1, 2, ..., T
- Time series generally have components such as:
 - random behavior
 - trends (upward or downward)
 - seasonal effects
 - cyclical effects
- Stationary time series have only random behavior.
- A trend is a gradual upward or downward movement of a time series.

Example 9.4: Identifying Trends in a Time Series

- The Energy Production & Consumption
 - General upward trend with some short downward trends; the time series is composed of several different short trends.

Seasonal Effects

A seasonal effect is one that repeats at fixed intervals of time, typically a year, month, week, or day.

Cyclical Effects

Cyclical effects describe ups and downs over a much longer time frame, such as several years.

Forecasting Models for Stationary Time Series

- Moving average model
- Exponential smoothing model
 - These are useful over short time periods when trend, seasonal, or cyclical effects are not significant

Moving Average Models

- The simple moving average method is a smoothing method based on the idea of averaging random fluctuations in the time series to identify the underlying direction in which the time series is changing.
- The simple moving average forecast for the next period is computed as the average of the most recent k observations.
 - Larger values of k result in smoother forecast models since extreme values have less impact.

Example 9.5: Moving Average Forecasting

The Tablet Computer Sales data contains the number of units sold over the past 17 weeks.

Three-period moving average forecast for week 18:

week 18 forecast =
$$\frac{82 + 71 + 50}{3} = 67.67$$

Spreadsheet Implementation of Moving Average Forecasting

1	Α	В	С	D	E	F	
1	Tablet Co	mputer Sales					
2			Moving Average				Tablet Computer Sales
3	Week	Units Sold	Forecast				lablet computer sales
4	1	88					100
5	2	44					• *
6	3	60		Forec	ast for wee	k 4	80
7	4	56	64.00 🖛	=AVE	AGE/RA-RE	5)	
8	5	70	53.33	-//16		-	
9	6	91	62.00				
10	7	54	72.33				5 40
11	8	60	71.67				20
12	9	48	68.33				20
13	10	35	54.00				0
14	11	49	47.67				
15	12	44	44.00				
16	13	61	42.67				week
17	14	68	51.33				
18	15	82	57.67				Units Sold Forecast
19	16	71	70.33				
20	17	50	73.67	Forec	ast for wee	k 18	
21	18		67.67 <	-4\/5	RAGE/R12	B20)	
22				-AVC	MOC(DIO.	0201	

Excel Moving Average Tool

Data Analysis options

Input		
Input Range:	\$8\$3:\$8\$20	UK
Labels in First Row		Cancel
Interval:	3	Help
Output options		
Output Range:	scss 🔠	
New Worksheet Ply:]
New Workbook		
Chart Output	Standard Errors	

We do not

recommend using the chart or error options because the forecasts generated by this tool are not properly aligned with the data

Example 9.7: Moving Average Forecasting with *XLMiner*

- Select Smoothing from the Time Series group and select Moving Average
- Enter the data range and move the time variable and dependent variable to the boxes on the right. Enter the interval (k).

Examnle 9.7 Continued

XLMiner results

Error Metrics and Forecast Accuarcy

 Mean absolute deviation (MAD)

MAD =
$$\frac{\sum_{t=1}^{n} |A_t - F_t|}{n}$$
 (9.1)

 Mean square error (MSE)

MSE =
$$\frac{\sum_{t=1}^{n} (A_t - F_t)^2}{n}$$
 (9.2)

 Root mean square error (RMSE)

RMSE =
$$\sqrt{\frac{\sum_{t=1}^{n} (A_t - F_t)^2}{n}}$$
 (9.3)

 Mean absolute percentage error (MAPE)

$$MAPE = \frac{\sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|}{n} \times 100$$
(9.4)

Example 9.8: Using Error Metrics to Compare Moving Average Forecasts

- Tablet Computer Sales data
- > 2-, 3-, and 4-period moving average models
- 2-period model ahs lowest error metric values

1	А	В	С	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q
1	Tablet Co	mputer Sale	5														
2			k = 2					k = 3					k = 4				
3	Week	Units Sold	Forecast	Error	Absolute	Squared	Absolute	Forecast	Error	Absolute	Squared	Absolute	Forecast	Error	Absolute	Squared	Absolute
4	1	88			Deviation	Error	% Error			Deviation	Error	% Error			Deviation	Error	% Error
5	2	44								Distance of the							
6	3	60	66.00	-6.00	6.00	36.00	10.00										
7	4	56	52.00	4.00	4.00	16.00	7.14	64.00	-8.00	8.00	64.00	14.29					
8	5	70	58.00	12.00	12.00	144.00	17.14	53.33	16.67	16.67	277.78	23.81	62.00	8.00	8.00	64.00	11.43
9	6	91	63.00	28.00	28.00	784.00	30.77	62.00	29.00	29.00	841.00	31.87	57.50	33.50	33.50	1122.25	36.81
10	7	54	80.50	-26.50	26.50	702.25	49.07	72.33	-18.33	18.33	336.11	33.95	69.25	-15.25	15.25	232.56	28.24
11	8	60	72.50	-12.50	12.50	156.25	20.83	71.67	-11.67	11.67	136.11	19.44	67.75	-7.75	7.75	60.06	12.92
12	9	48	57.00	-9.00	9.00	81.00	18.75	68.33	-20.33	20.33	413.44	42.36	68.75	-20.75	20.75	430.56	43.23
13	10	35	54.00	-19.00	19.00	361.00	54.29	54.00	-19.00	19.00	361.00	54.29	63.25	-28.25	28.25	798.06	80.71
14	11	49	41.50	7.50	7.50	56.25	15.31	47.67	1.33	1.33	1.78	2.72	49.25	-0.25	0.25	0.06	0.51
15	12	44	42.00	2.00	2.00	4.00	4.55	44.00	0.00	0.00	0.00	0.00	48.00	-4.00	4.00	16.00	9.09
16	13	61	46.50	14.50	14.50	210.25	23.77	42.67	18.33	18.33	336.11	30.05	44.00	17.00	17.00	289.00	27.87
17	14	68	52.50	15.50	15.50	240.25	22.79	51.33	16.67	16.67	277.78	24.51	47.25	20.75	20.75	430.56	30.51
18	15	82	64.50	17.50	17.50	306.25	21.34	57.67	24.33	24.33	592.11	29.67	55.50	26.50	26.50	702.25	32.32
19	16	71	75.00	-4.00	4.00	16.00	5.63	70.33	0.67	0.67	0.44	0.94	63.75	7.25	7.25	52.56	10.21
20	17	50	76.50	-26.50	26.50	702.25	53.00	73.67	-23.67	23.67	560.11	47.33	70.50	-20.50	20.50	420.25	41.00
21	18		60.50		13.63	254.38	23.63	67.67		14.86	299.84	25.37	67.75		16.13	355.25	28.07
22					MAD	MSE	MAPE			MAD	MSE	MAPE			MAD	MSE	MAPE

Exponential Smoothing Models

Simple exponential smoothing model:

 $F_{t+1} = (1 - \alpha)F_t + \alpha A_t$ = $F_t + \alpha (A_t - F_t)$ (9.5)

where F_{t+1} is the forecast for time period t + 1, F_t is the forecast for period t, A_t is the observed value in period t, and α is a constant between 0 and 1 called the **smoothing constant**.

To begin, set F₁ and F₂ equal to the actual observation in period 1, A₁.

Example 9.9: Using Exponential Smoothing to Forecast Tablet Computer Sales

1	А	В	С	D	E	F	G	н	I	J	к
1	Tablet Co	mputer Sales									
2						Smoot	thing Con	stant			
3	Week	Units Sold	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
4	1	88	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00
5	2	44	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00
6	3	60	83.60	79.20	74.80	70.40	66.00	61.60	57.20	52.80	48.40
7	4	56	81.24	75.36	70.36	66.24	63.00	60.64	59.16	58.56	58.84
8	5	70	78.72	71.49	66.05	62.14	59.50	57.86	56.95	56.51	56.28
9	6	91	77.84	71.19	67.24	65.29	64.75	65.14	66.08	67.30	68.63
10	7	54	79.16	75.15	74.37	75.57	77.88	80.66	83.53	86.26	88.7£
11	8	60	76.64	70.92	68.26	66.94	65.94	64.66	62.86	60.45	57.48
12	9	48	74.98	68.74	65.78	64.17	62.97	61.87	60.86	60.09	59.75
13	10	35	72.28	64.59	60.45	57.70	55.48	53.55	51.86	50.42	49.17
14	11	49	68.55	58.67	52.81	48.62	45.24	42.42	40.06	38.08	36.42
15	12	44	66.60	56.74	51.67	48.77	47.12	46.37	46.32	46.82	47.74
16	13	61	64.34	54.19	49.37	46.86	45.56	44.95	44.70	44.56	44.37
17	14	68	64.00	55.55	52.86	52.52	53.28	54.58	56.11	57.71	59.34
18	15	82	64.40	58.04	57.40	58.71	60.64	62.63	64.43	65.94	67.13
19	16	71	66.16	62.83	64.78	68.03	71.32	74.25	76.73	78.79	80.51
20	17	50	66.65	64.47	66.65	69.22	71.16	72.30	72.72	72.56	71.95
21	18		64.98	61.57	61.65	61.53	60.58	58.92	56.82	54.51	52.20
22		MAD	19.33	17.16	16.15	15.36	14.93	14.71	14.72	14.88	15.36
23		MSE	496.07	390.84	359.18	346.56	340.77	338.41	339.03	343.32	352.38
24		MAPE	38.28%	32.71%	30.12%	28.36%	27.54%	27.09%	27.09%	27.38%	28.23%

Forecast for week 3 when $\alpha = 0.7$: (1 - 0.7)(88) + (0.7)(44) = 57.2

Example 9.10: Finding the Best Exponential Smoothing Model for *Tablet Computer Sales*

1	А	В	С	D	E	F	G	н	I	J	к
1	Tablet Co	mputer Sales									
2						Smoot	thing Con	stant			
3	Week	Units Sold	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
4	1	88	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00
5	2	44	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00	88.00
6	3	60	83.60	79.20	74.80	70.40	66.00	61.60	57.20	52.80	48.40
7	4	56	81.24	75.36	70.36	66.24	63.00	60.64	59.16	58.56	58.84
8	5	70	78.72	71.49	66.05	62.14	59.50	57.86	56.95	56.51	56.28
9	6	91	77.84	71.19	67.24	65.29	64.75	65.14	66.08	67.30	68.63
10	7	54	79.16	75.15	74.37	75.57	77.88	80.66	83.53	86.26	88.7£
11	8	60	76.64	70.92	68.26	66.94	65.94	64.66	62.86	60.45	57.48
12	9	48	74.98	68.74	65.78	64.17	62.97	61.87	60.86	60.09	59.75
13	10	35	72.28	64.59	60.45	57.70	55.48	53.55	51.86	50.42	49.17
14	11	49	68.55	58.67	52.81	48.62	45.24	42.42	40.06	38.08	36.42
15	12	44	66.60	56.74	51.67	48.77	47.12	46.37	46.32	46.82	47.74
16	13	61	64.34	54.19	49.37	46.86	45.56	44.95	44.70	44.56	44.37
17	14	68	64.00	55.55	52.86	52.52	53.28	54.58	56.11	57.71	59.34
18	15	82	64.40	58.04	57.40	58.71	60.64	62.63	64.43	65.94	67.13
19	16	71	66.16	62.83	64.78	68.03	71.32	74.25	76.73	78.79	80.51
20	17	50	66.65	64.47	66.65	69.22	71.16	72.30	72.72	72.56	71.95
21	18		64.98	61.57	61.65	61.53	60.58	58.92	56.82	54.51	52.20
22		MAD	19.33	17.16	16.15	15.36	14.93	14.71	14.72	14.88	15.36
23		MSE	496.07	390.84	359.18	346.56	340.77	338.41	339.03	343.32	352.38
24		MAPE	38.28%	32.71%	30.12%	28.36%	27.54%	27.09%	27.09%	27.38%	28.23%

The forecast using α = 0.6 provides the lowest error metrics.

Example 9.11: Using Excel's Exponential Smoothing Tool

- Select Data Analysis from the Analysis group and then choose Exponential Smoothing
- Note that *Damping factor* = 1α
- The first cell of the Output Range should be adjacent to the first data point

Exponential Smoothing		? ×
Input Input Range: Damping factor:	\$8\$3:\$8\$20 5 .4	OK Cancel Help
Output options Qutput Range: New Worksheet Ply: New Workbook	\$C\$4	
Chart Output	Standard Errors	

Example 9.11 Continued

Exponential Smoothing tool results

Exponential Smoothing in XLMiner

- Select Exponential from the Time Series/Smoothing menu.
- Within the Weights pane, it provides options to either enter the smoothing constant, Level (Alpha) or to check an Optimize box, which will find the best value of the smoothing constant.

Example 9.12: Optimizing Exponential Smoothing Forecasts Using *XLMiner*

 The best smoothing constant is 0.63

Forecasting Models for Time Series with a Linear Trend

- Double moving average and double exponential smoothing
- Based on the linear trend equation

 $F_{t+k} = a_t + b_t k \tag{9.6}$

- The forecast for k periods into the future is a function of the level a_t and the trend b_t
- The models differ in their computations of a_t and b_t
- XLMiner does not support a procedure for double moving average; however, it does provide one for double exponential smoothing.

Double Exponential Smoothing

Estimates of the parameters are obtained from the following equations:

$$a_t = \alpha F_t + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_t = \beta(a_t - a_{t-1}) + (1 - \beta)b_{t-1}$$
(9.7)

Initial values are chosen for a₁ as A₁ and b₁ as A₂ – A₁. Equation (9.7) must then be used to compute a_t and b_t for the entire time series to be able to generate forecasts into the future.

Example 9.13: Double Exponential Smoothing with *XLMiner*

Excel file Coal Production

Example 9.13 Continued

XLMiner

 optimization
 results
 the best
 values of α
 and β are
 0.684 and
 0.00

1 XLMiner : Time Series - Double Exponential Smoothing		
2		
3 Output Navigator		
4 Inputs Eited Model Excepts		
5 Elapsed Time Error Measures(Training) Error Measures(Validation)		
13 14 Parameters/Online		
15 Optimization Selected		
16 Alpha (Level) 0.684530657		
17 Beta (Trend) 191137E-15		
19 Season length N.A.		
20 Number of seasons N.A.		
21 Frecast Yes		
22 Illiorecasts 3		
24 Fitted Model		
26 Year Actual Forecast Residuals		
27 1960 434329000 454233422.3 -19904422.26		
28 1961 420423000 456021772 -35598771.99 Time Plot of Actual Vs Forecast (Training	ng Data)	
29 1962 439043000 447066858.2 -8023858.184 1.4E+09 3		
30 1963 477195000 456987818.2 20207191.76 1.2F 02		
31 1964 504182000 485233790.6 17948209.38 1.2E+09	\sim	~
32 1965 52854000 513933427.1 1020572.85 1E+09		
36 36 57073000 57092000 - 57072000 5707200		
37 1970 512551000 5889314131 2372550 33 40000000		
38 1971 560919000 6205885817 -5968558167 200000000		
39 1972 602492000 595156460.7 7335533.3		
40 1973 599569000 615591399.2 -17023399.21	6 0 N	
<u>41 </u> 1974 610023000 619351397.5] -9328897.536 & & & & & & & & & & & & & & & & & & &	ST 100 100	2000
42 1975 654641000 628379518.1 26261481.85		
43 1976 684913000 661769844.5 23143155.46 Tear		
44 1977 637205000 633025580.9 4179419.075		
145 1 1978) 67064000 703006840		
		-

Regression-Based Forecasting for Time Series with a Linear Trend

Simple linear regression can be applied to forecasting using time as the independent variable.

Example 9.14: Forecasting Using Trendlines

Coal Production data with a linear trendline

Note that the linear model does not adequately predict the recent drop in production after 2008.

Autocorrelation in Time Series

- When autocorrelation is present, successive observations are correlated with one another; for example, large observations tend to follow other large observations, and small observations also tend to follow one another.
 - In such cases, other approaches, called autoregressive models, are more appropriate.

Forecasting Time Series with Seasonality

- When time series exhibit seasonality, different techniques provide better forecasts than the ones we have described:
 - Multiple regression models with categorical variables for the seasonal components
 - Holt-Winters models, similar to exponential smoothing models in that smoothing constants are used to smooth out variations in the level and seasonal patterns over time. For time series with seasonality but no trend, *XLMiner* supports a Holt-Winters method but does not have the ability to optimize the parameters.

Example 9.15: Regression-Based Forecasting for Natural Gas Usage

- Gas & Electric Excel file
- Use a seasonal categorical
- variable with k = 12 levels.
- Construct the regression model using k - 1 dummy variables, with January being the reference month.

gas usage = $\beta_0 + \beta_1$ time + β_2 February + β_3 March + β_4 April + β_5 May + β_6 June + β_7 July + β_8 August + β_9 September + β_{10} October + β_{11} November + β_{12} December

Example 9.15 Continued

Data matrix

	Α	В	С	D	Е	F	G	н	1	J	к	L	М	Ν
1	Gas an	d Electric	Usage	9										
2														
3	Month	Gas Use	Time	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
4	Jan	244	1	0	0	0	0	0	0	0	0	0	0	0
5	Feb	228	2	1	0	0	0	0	0	0	0	0	0	0
6	Mar	153	3	0	1	0	0	0	0	0	0	0	0	0
7	Apr	140	4	0	0	1	0	0	0	0	0	0	0	0
8	May	55	5	0	0	0	1	0	0	0	0	0	0	0
9	Jun	34	6	0	0	0	0	1	0	0	0	0	0	0
10	Jul	30	7	0	0	0	0	0	1	0	0	0	0	0
11	Aug	28	8	0	0	0	0	0	0	1	0	0	0	0
12	Sep	29	9	0	0	0	0	0	0	0	1	0	0	0
13	Oct	41	10	0	0	0	0	0	0	0	0	1	0	0
14	Nov	88	11	0	0	0	0	0	0	0	0	0	1	0
15	Dec	199	12	0	0	0	0	0	0	0	0	0	0	1
16	Jan	230	13	0	0	0	0	0	0	0	0	0	0	0
17	Feb	245	14	1	0	0	0	0	0	0	0	0	0	0
18	Mar	247	15	0	1	0	0	0	0	0	0	0	0	0
19	Apr	135	16	0	0	1	0	0	0	0	0	0	0	0
20	May	34	17	0	0	0	1	0	0	0	0	0	0	0
21	Jun	33	18	0	0	0	0	1	0	0	0	0	0	0
22	Jul	27	19	0	0	0	0	0	1	0	0	0	0	0
23	Aug	26	20	0	0	0	0	0	0	1	0	0	0	0
24	Sep	28	21	0	0	0	0	0	0	0	1	0	0	0
25	Oct	39	22	0	0	0	0	0	0	0	0	1	0	0
26	Nov	86	23	0	0	0	0	0	0	0	0	0	1	0
27	Dec	188	24	0	0	0	0	0	0	0	0	0	0	1

Example 9.15 Continued

 Final regression results (time and February were insignificant)

1	A	в	С	D	E	F	G	н	1
1	SUMMARY OUTPUT								
2									
3	Regression St	atistics							
4	Multiple R	0.985480895							
5	R Square	0.971172595							
6	Adjusted R Square	0.948997667							
7	Standard Error	19.54432831							
8	Observations	24							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	10	167292.2083	16729.22083	43.79597661	2.33344E-08			
13	Residual	13	4965.75	381.9807692					
14	Total	23	172257.9583						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	236.75	9.772164157	24.22697738	3.33921E-12	215.6385228	257.8614772	215.6385228	257.8614772
18	Mar	-36.75	16.92588482	-2.171230656	0.049016211	-73.31615105	-0.183848953	-73.31615105	-0.183848953
19	Apr	-99.25	16.92588482	-5.863799799	5.55744E-05	-135.816151	-62.68384895	-135.816151	-62.68384895
20	May	-192.25	16.92588482	-11.35834268	4.02824E-08	-228.816151	-155.683849	-228.816151	-155.683849
21	Jun	-203.25	16.92588482	-12.00823485	2.07264E-08	-239.816151	-166.683849	-239.816151	-166.683849
22	Jul	-208.25	16.92588482	-12.30364038	1.54767E-08	-244.816151	-171.683849	-244.816151	-171.683849
23	Aug	-209.75	16.92588482	-12.39226204	1.41949E-08	-246.316151	-173.183849	-246.316151	-173.183849
24	Sep	-208.25	16.92588482	-12.30364038	1.54767E-08	-244.816151	-171.683849	-244.816151	-171.683849
25	Oct	-196.75	16.92588482	-11.62420766	3.05791E-08	-233.316151	-160.183849	-233.316151	-160.183849
26	Nov	-149.75	16.92588482	-8.847395666	7.30451E-07	-186.316151	-113.183849	-186.316151	-113.183849
27	Dec	-43.25	16.92588482	-2.555257847	0.023953114	-79.81615105	-6.683848953	-79.81615105	-6.683848953

gas usage = 236.75 - 36.75 March - 99.25 April

- 192.25 May 203.25 June 208.25 July
- 209.75 August 208.25 September
- 196.75 October 149.75 November
- 43.25 December

Holt-Winters Models for Forecasting Time Series with Seasonality and Trend

The Holt-Winters additive model applies to time series with relatively stable seasonality and is based on the equation

$$F_{t+1} = a_t + b_t + S_{t-s+1}$$
(9.8)

The Holt-Winters multiplicative model applies to time series whose amplitude increases or decreases over time and is

$$F_{t+1} = (a_t + b_t)S_{t-s+1}$$
(9.9)

A chart of the time series should be viewed first to identify the appropriate type of model to use.

Example 9.16: Forecasting Natural Gas Usage Using Holt-Winters No-Trend Model

- XLMiner > Time Series > Smoothing >Holt Winter No Trend...
- In the Parameters pane, the value of Period is the length of the season, in this case, 12 months.
- You will generally have to experiment with the smoothing constants to identify the best model.

Holt Winters' Smoothing (No trend Mo	odel)
Worksheet: Gas and Electric	Workbook: Gas & Electric.xlsx
Data range: \$A\$3:\$B\$27	_ # Columns: 2 # Rows: 24
Variables	
	≤ Time Month
	≤ Selected varjable Gas Use
Deserter.	
Parameters Period 12 Weights	# Complete seasons 2 Output options
Level (Alpha)	Forecast options
Seasonal (Gamma) 0.6	#forecasts 12
Help	OK Cancel
Enter Level(Alpha).	

Example 9.16 Continued

 XLMiner results

	A 0			<u> </u>		
22	Fitted Mode	al l				
24						
25		Month	Actual	Forecast	Residuals	
26		Jan	244	232.5110166	11.48898338	
27		Feb	228	233.1669616	-5.166961552	Time Plot of Actual Vs Forecast (Training Data)
28		Mar	153	196.7444105	-43.74441048	200 -
29		Apr	140	132.254354	7.745646013	300 J
30		May	55	43.05299547	11.94700453	250 -
31		Jun	34	33.31006322	0.689936777	
32		Jul	30	28.39710811	1.60289189	a 200 - ()
33		Aug	28	27.05437639	0.945623612	3 (m) / / /
34		Sep	29	28.65721312	0.342786876	g ¹⁵⁰]
35		Oct	41	40.26876044	0.731239562	o 100 /
36		Nov	88	87.74359856	0.256401443	
37		Dec	199	195.210893	3.789107026	50
38		Jan	230	245.9203019	-15.92030189	
39		Feb	245	234.6582226	10.34177742	
40		Mar	247	176.9643178	70.03568225	المحلي أكلي المثل العلي أكليا أكليا أحلي أكلي أكلي العلي العلي أكليا أكليا
41		Apr	135	148.7161242	-13.71612416	Maalh
42		May	34	52.97317647	-18.97317647	Monun
43		Jun	33	33.93217254	-0.932172542	
44		Jul	27	29.3335162	-2.333516202	Actual Forecast
45		Aug	26	27.26084293	-1.260842928	
46		Sep	28	28.29484269	-0.294842686	
47		Oct	39	39.80219176	-0.802191759	
48		Nov	86	85.69281212	0.307187885	
49		Dec	188	192.3520753	-4.352075296	
50						
51						
52	Error Mease	ures (Training	a)			
53						
54		MAPE	8.595445716			
55		MAD	9.488370193			
56		MSE	338.9665158			
57						
58	Forecast					
59						
03		Month	Forecast	LCI	UCI	
61		Ecrecast01	230.4014413	194 3157964	266 4870862	
62		Forecast02	234,7869609	198 701316	270,8726058	
63		Forecast03	207 6051964	171 5195415	243 6908313	
64		Forecast04	132 208982	96 12333706	168 2946268	
65		Forecast05	40.00822428	3,922579391	76.09386917	
66		Forecast06	32,75435753	-3.331293362	68,83999642	
67		Forecast07	27,57400817	-8.51163672	63,65965306	
68		Forecast08	26.32283878	-9.762806111	62,40848367	
69		Forecast09	27,99606567	-8.089579215	64.08171056	
70		Forecast010	39,21394812	3,128303229	75,29959301	
71		Forecast011	85,69508267	49,60943778	121,7807276	
72		Forecast012	189,5667471	153,4811022	225,652392	

Example 9.17: Forecasting New Car Sales Using Holt-Winters Models

There is clearly a stable seasonal factor in the time series, along with an increasing trend; therefore, the Holt-Winters additive model would appear

Example 9.17: Continued

XLMiner > Time
 Series > Smoothing >
 Holt Winter Additive...

Holt Winters' Smoothing (Additive Mo	odel)
Worksheet: New car sales	▼ Workbook: New Car Sales.xlsx ▼
Data range: \$A\$3:\$C\$39	_ # Columns: 3 # Rows: 36
Variables	
Variables in input data	
Year	≤ Time ≤ Month
	≤ Selected varjable Units
- Parameters	
Period 12	# Complete seasons 3
Weights	Output options
Level (Alpha) 0.2	Glue Foreraet
Trend (Beta) 0.15	
Seasonal (Gamma) 0.05	
Нер	OK Cancel
Enter Period.	

Example 9.17 Continued

XLMiner results

- 4	A B	С	D	E	F	G H I J K L							
1	1 XLMiner : Time Series - Holt Winter Forecasting Method(Additive Model)												
3		utput Naviga	tor										
4	loputs	Eitted Model	Forecast										
5	Elapsed. Time Error Measures(Training)			Error Measures(Validation)									
22	Fitted Model												
24		Month	Actual	Forecast	Residuals								
25		Jan	39810	43536.46201	-3726.46201	Time Plot of Actual V/c Forecast (Training Data)							
26		Feb	40081	43057.78914	-2976.78914	Time Plot of Actual VS Porecast (Training Data)							
20		Mar	4/440	42533.83285	4800.167148	70000 ₁							
29		Mar	49211	45018 84122	4192 158692	600.00							
30		Jun	51479	46405 59467	5073,405325								
31		Jul	46466	48120,70874	-1654,70874	S000 1							
32		Aug	45208	48440.65231	-3232.65231	£ 40000							
33		Sep	44800	48347.94308	-3547.94308	5 30000							
34		Oct	46989	48085.78966	-1096.78966	000.00							
35		Nov	42161	48280.8989	-6119.8989	20000 -							
36		Dec	44186	47287.86812	-3101.86812	100.00 -							
37		Jan	42227	46656.33112	-4429.33112	0							
38		FeD	45422	45805.522.36	-383.522305 0041.4522027	الم هو الله الله الله الله الله الله الله ا							
33		mar	540/5	45033.0467	2000 400550	2. 4. 4							
41		Mar	53572	4990149457	4770 515431	Month							
42		Jup	54920	50261 91275	4658 087248								
43		Jul	54449	51535,13271	2913.867292	Actual Forecast							
44		Aug	56079	52753.02509	3325.974907								
45		Sep	52177	54203.53984	-2026.53984								
46		Oci	50087	54633.46547	-4546.46547								
47		Nov	48513	54123.97716	-5610.97716								
48		Dec	49278	53554.9816	-4276.9816								
49		Jan	48134	5280159962	-4667.59962								
50		reb	54887	52224.03769	2662.302312								
52		Acr	53350	55343 97343	1993 97242								
53		May	59467	55451 11044	4015 88956								
54		Jun	59370	56812 19404	2557,805959								
55		Jul	55088	57588.65822	-2500.65822								
56		Aug	59349	57570.76332	1778.236677								
57		Sep	54472	58281.8312	-3809.8312								
58		Oct	53164	57985.00416	-4821.00416								
59		Nov	48793	57100.49411	-8307.49411								
60		Dec	46956	55687.12594	-873112594								
5													
62	Error Meas	ures (Traini	ng)										
64		LADE	0.050006544	1									
65 66		MAD	8.050205544 4006.960117 19726509.01										
<u>~</u>		INDE	iar20003.01										

Selecting Appropriate Time-Series-Based Forecasting Methods

	No Seasonality	Seasonality
No trend	Simple moving average or simple exponential smoothing	Holt-Winters no-trend smoothing model or multiple regression
Trend	Double exponential smoothing	Holt-Winters additive or Holt-Winters multiplicative model

Regression Forecasting with Causal Variables

- In many forecasting applications, other independent variables besides time, such as economic indexes or demographic factors, may influence the time series.
- Explanatory/causal models, often called econometric models, seek to identify factors that explain statistically the patterns observed in the variable being forecast, usually with regression analysis

Example 9.18: Forecasting Gasoline Sales Using Simple Linear Regression

- Excel file Gasoline Sales
- Simple trendline using week as the independent variable

Predicted sales for week 11 = 812.99(11) + 4790.1 = 13,733 gallons

Example 9.19: Incorporating Causal Variables in a Regression-Based Forecasting Model

- The average price per gallon changes each week, and this may influence consumer sales. Average price per gallon is a causal variable.
- Develop a multiple linear regression model to predict gasoline sales using both <u>time</u> and <u>price per gallon</u>.

Example 9.19 Continued

• Multiple regression model sales = $\beta_0 + \beta_1$ week + β_2 price/gallon

	А	В	с	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression Statistics						
4	Multiple R	0.930528528					
5	R Square	0.865883342					
6	Adjusted R Square	0.827564297					
7	Standard Error	1235.400329					
8	Observations	10					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	68974748.7	34487374.35	22.59668368	0.000883465	
13	Residual	7	10683497.8	1526213.972			
14	Total	9	79658246.5				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	72333.08447	21969.92267	3.292368642	0.013259225	20382.47252	124283.6964
18	Week	508.6681395	168.1770861	3.024598364	0.019260863	110.9925232	906.3437559
19	Price/Gallon	-16463.19901	5351.082403	-3.076611005	0.017900405	-29116.49823	-3809.899786

Predicted sales for week 11 = 72,333 + 508.7(11) - 16,463(3.80) = 15,368 gallons

The Practice of Forecasting

- Judgmental and qualitative methods are used for forecasting sales of product lines and broad company and industry forecasts.
- Simple time-series models are used for short- and medium-range forecasts.
- Regression methods are typically used for longterm forecasts.

Google Analytics GROUP Project 5 Email me (<u>albert.kalim@asbury.edu</u>) your GROUP answers by Friday, 7/8,11:59 p.m. ET (10 points total)

Log in to your Google Analytics dashboard <u>here</u> and click Sign in to Analytics.

After you logged in, focus on the following three tools on the left-hand side: Audience, Acquisition, and Behavior. Work with your group and list three business recommendations for each of the tool <u>and</u> elaborate on them. <u>These</u> <u>recommendations must be new or different than your individual project 3 and 4</u> <u>answers.</u> You will be graded as a group and individually based on your familiarity with the tools and how you read/interpret the data.