

Chapter 8 Trendlines and Regression Analysis

Modeling Relationships and Trends in Data

- Create charts to better understand data sets.
- For cross-sectional data, use a scatter chart.
- For time series data, use a line chart.

Common Mathematical Functions Used n Predictive Analytical Models

Lineary = a + bxLogarithmicy = ln(x)Polynomial (2nd order) $y = ax^2 + bx + c$ Polynomial (3rd order) $y = ax^3 + bx^2 + dx + e$ Power $y = ax^b$ Exponential $y = ab^x$

(the base of natural logarithms, *e* = 2.71828...is often used for the constant *b*)

Excel Trendline Tool

- Right click on data series and choose Add trendline from pop-up menu
- Check the boxes Display Equation on chart and Display R-squared value on chart

Format Trendline	- ×
TRENDLINE OPTIONS -	
()) (Q) (III)	
A TRENDLINE OPTIONS	
ن Exponential	Π
🦟 🖲 Linear	
C Logarithmic	
O Polynomial	Order 2 🛟
<u>بي</u> O Po <u>w</u> er	
O Moving Average	Pgriod 2 🛟
Trendline Name	
Automatic	Linear (Series1)
○ <u>C</u> ustom	1000000000
Forecast	
<u>F</u> orward	0.0 periods
Backward C	0.0 periods
Set Intercept	0.0
Display Equation on chart	
Display <u>R</u> -squared value or	n chart 💌

R²

- R² (R-squared) is a measure of the "fit" of the line to the data.
 - The value of R^2 will be between 0 and 1.
 - A value of 1.0 indicates a perfect fit and all data points would lie on the line; the larger the value of R² the better the fit.

Example 8.1: Modeling a Price-Demand Function

Linear demand function: Sales = 20,512 - 9.5116(price)

Example 8.2: Predicting Crude Oil Prices

Line chart of historical crude oil prices

Example 8.9 Continued

Excel's Trendline tool is used to fit various functions to the data.

Exponential $y = 50.49e^{0.021x}$ $R^2 = 0.664$ Logarithmic $y = 13.02\ln(x) + 39.60$ $R^2 = 0.382$ Polynomial 2° $y = 0.13x^2 - 2.399x + 68.01$ $R^2 = 0.905$ Polynomial 3° $y = 0.005x^3 - 0.111x^2$ $R^2 = 0.928 *$ Power $y = 45.96x^{0.0169}$ $R^2 = 0.397$

Example 8.2 Continued

Third order polynomial trendline fit to the data

Caution About Polynomials

- The R² value will continue to increase as the order of the polynomial increases; that is, a 4th order polynomial will provide a better fit than a 3rd order, and so on.
- Higher order polynomials will generally not be very smooth and will be difficult to interpret visually.
 - Thus, we don't recommend going beyond a third-order polynomial when fitting data.
- Use your eye to make a good judgment!

Regression Analysis

- Regression analysis is a tool for building mathematical and statistical models that characterize relationships between a dependent (ratio) variable and one or more independent, or explanatory variables (ratio or categorical), all of which are numerical.
- Simple linear regression involves a single independent variable.
- Multiple regression involves two or more independent variables.

Simple Linear Regression

- Finds a linear relationship between:
 - one independent variable X and
 - one dependent variable Y
- First prepare a scatter plot to verify the data has a linear trend.
- Use alternative approaches if the data is not linear.

Example 8.3: Home Market Value Data

Size of a house is typically related to its market value.

X = square footage
Y = market value (\$)

The scatter plot of the full data set (42 homes) indicates a linear trend.

	А	В	с
1	Home Marke	et Value	
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

Finding the Best-Fitting Regression Line

- Market value = a + b × square feet
- Two possible lines are shown below.

- Line A is clearly a better fit to the data.
- We want to determine the best regression line.

Example 8.4: Using Excel to Find the Best Regression Line

- Market value = 32,673 + \$35.036 × square feet
 - The estimated market value of a home with 2,200 square feet would be: market value = \$32,673 + \$35.036 × 2,200 = \$109,752

The regression model explains variation in market value due to size of the home. It provides better estimates of market value than simply using the average.

Least-Squares Regression

Simple linear regression model:

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{8.1}$$

We estimate the parameters from the sample data:

$$\hat{Y} = b_0 + b_1 X$$
 (8.2)

Let X_i be the value of the independent variable of the *i*th observation. When the value of the independent variable is X_i , then $\hat{Y}_i = b_0 + b_1 X_i$ is the estimated value of Y for X_i .

Residuals

 Residuals are the observed errors associated with estimating the value of the dependent variable using the regression line:

Least Squares Regression

The best-fitting line minimizes the sum of squares of the residuals.

$$\sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \sum_{i=1}^{n} (Y_{i} - [b_{0} + b_{1}X_{i}])^{2}$$
(8.4)
$$b_{1} = \frac{\sum_{i=1}^{n} X_{i}Y_{i} - n\overline{X} \overline{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}$$
(8.5)
$$b_{0} = \overline{Y} - b_{1}\overline{X}$$
(8.6)

- Excel functions:
 - =INTERCEPT(known_y's, known_x's)
 - =SLOPE(known_y's, known_x's)

Example 8.5: Using Excel Functions to Find Least-Squares Coefficients

- Slope = b₁ = 35.036 =SLOPE(C4:C45, B4:B45)
- Intercept = b₀ = 32,673 =INTERCEPT(C4:C45, B4:B45)

	А	A B	
1	Home Marke	t Value	
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

Estimate Y when X = 1750 square feet
 Ŷ = 32,673 + 35.036(1750) = \$93,986
 =TREND(C4:C45, B4:B45, 1750)

Simple Linear Regression With Excel

Data > Data Analysis > Regression Input Y Range (with header) Input X Range (with header) Check Labels

Excel outputs a table with many useful regression statistics.

Regression		? X
Input Input ¥ Range: Input ¥ Range: Labels Confidence Level:	Constant is Zero	OK Cancel Help
Output options © Qutput Range: New Worksheet Ply: New Workbook 		
Residuals Besiduals Standardized Residuals Normal Probability Normal Probability Plot	Residual Plots	

Home Market Value Regression Results

	А	В	С	D	E	F	G
1	Regression Analysis						
2							
3	Regression	Statistics					
4	Multiple R	0.731255223					
5	R Square	0.534734202					
6	Adjusted R Square	0.523102557					
7	Standard Error	7287.722712					
8	Observations	42					
9							
10	ANOVA						
11		đť	55	MS	F	Significance F	
12	Regression	1	2441633669	2441633669	45.97236277	3.79802E-08	
13	Residual	40	2124436093	53110902.32			
14	Total	41	4566069762				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	32673.2199	8831.950745	3.699434116	0.000649604	14823.18178	50523.25802
18	Square Feet	35.03637258	5.16738385	6.780292234	3.79802E-08	24.59270036	45.48004481

Regression Statistics

- Multiple R | r |, where r is the sample correlation coefficient. The value of r varies from -1 to +1 (r is negative if slope is negative)
- R Square coefficient of determination, R², which varies from 0 (no fit) to 1 (perfect fit)
- Adjusted R Square adjusts R² for sample size and number of X variables
- Standard Error variability between observed and predicted Y values. This is formally called the standard error of the estimate, S_{YX}.

Example 8.6: Interpreting Regression Statistics for Simple Linear Regression

1	Α	В		с	D	Е	F	G	
1	Regression Analysis								
2				520/ o	ftheveric	tion in ho	ma markat		
3	Regression	Statistics		55%0				alues	
4	Multiple R	0.731255223		can be explained by home size.					
5	R Square	0.534734202		The standard error of (7297) is less than					
6	Adjusted R Square	0.523102557		The standard error of \$7287 is less than					
7	Standard Error	7287.722712		standard deviation (not shown) of \$10,553.					
8	Observations	42				-			
9									
10	ANOVA								
11		đť		SS	MS	F	Significance F		
12	Regression	1	24	41633669	2441633669	45.97236277	3.79802E-08		
13	Residual	40	2	24436093	53110902.32				
14	Total	41	4	566069762					
15									
16		Coefficients	Standa	ard Error	t Stat	P-value	Lower 95%	Upper 95	5%
17	Intercept	32673.2199	88	31.950745	3.699434116	0.000649604	14823.18178	50523.25	802
18	Square Feet	35.03637258	5	.16738385	6.780292234	3.79802E-08	24.59270036	45.48004	481

Regression as Analysis of Variance

ANOVA conducts an *F*-test to determine whether variation in *Y* is due to varying levels of *X*.

ANOVA is used to test for *significance of regression:*

 H_0 : population slope coefficient = 0

*H*₁: population slope coefficient \neq 0

Excel reports the *p*-value (Significance F).

Rejecting H_0 indicates that X explains variation in Y.

Example 8.7: Interpreting Significance of Regression

 $H_0: \beta_1 = 0$ Home size is <u>not</u> a significant variable

 $H_1: \beta_1 \neq 0$ Home size is a significant variable

- ▶ *p*-value = 3.798 x 10⁻⁸
 - Reject H₀: The slope is not equal to zero. Using a linear relationship, home size is a significant variable in explaining variation in market value.

1	Α	в	с	D	E	F	G
1	Regression Analysis						
2							
3	Regression	Statistics					
4	Multiple R	0.731255223					
5	R Square	0.534734202					
6	Adjusted R Square	0.523102557					
7	Standard Error	7287.722712					
8	Observations	42					
9							
10	ANOVA						
11		đť	55	MS	F	Significance F	
12	Regression	1	2441633669	2441633669	45.97236277	3.79802E-08	
13	Residual	40	2124436093	53110902.32			
14	Total	41	4566069762				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	32673.2199	8831.950745	3.699434116	0.000649604	14823.18178	50523.25802
18	Square Feet	35.03637258	5.16738385	6.780292234	3.79802E-08	24.59270036	45.48004481

Testing Hypotheses for Regression Coefficients

An alternate method for testing whether a slope or intercept is zero is to use a t-test:

 $t = \frac{b_1 - 0}{\text{standard error}}$

(8.8)

Excel provides the *p*-values for tests on the slope and intercept.

4	Α	в	с	D	E	F	G
1	Regression Analysis						
2							
3	Regression	Statistics					
4	Multiple R	0.731255223					
5	R Square	0.534734202					
6	Adjusted R Square	0.523102557					
7	Standard Error	7287.722712					
8	Observations	42					
9							
10	ANOVA						
11		đť	55	MS	F	Significance F	
12	Regression	1	2441633669	2441633669	45.97236277	3.79802E-08	
13	Residual	40	2124436093	53110902.32			
14	Total	41	4566069762				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	32673.2199	8831.950745	3.699434116	0.000649604	14823.18178	50523.25802
18	Square Feet	35.03637258	5.16738385	6.780292234	3.79802E-08	24.59270036	45.48004481

Example 8.8: Interpreting Hypothesis Tests for Regression Coefficients

$$t = \frac{b_1 - 0}{\text{standard error}}$$
(8.8)

Use p-values to draw conclusion

1	Α	В	с	D	E	F	G
1	Regression Analysis						
2							
3	Regression	o Statistics					
4	Multiple R	0.731255223					
5	R Square	0.534734202					
6	Adjusted R Square	0.523102557					
7	Standard Error	7287.722712					
8	Observations	42					
9							
10	ANOVA						
11		đł	55	MS	F	Significance F	
12	Regression	1	2441633669	2441633669	45.97236277	3.79802E-08	
13	Residual	40	2124436093	53110902.32			
14	Total	41	4566069762				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	32673.2199	8831.950745	3.699434116	0.000649604	14823.18178	50523.25802
18	Square Feet	35.03637258	5.16738385	6.780292234	3.79802E-08	24.59270036	45.48004481

Neither coefficient is statistically equal to zero.

Confidence Intervals for Regression Coefficients

- Confidence intervals (Lower 95% and Upper 95% values in the output) provide information about the unknown values of the true regression coefficients, accounting for sampling error.
- We may also use confidence intervals to test hypotheses about the regression coefficients.

• To test the hypotheses

$$H_0: \beta_1 = B_1$$
$$H_1: \beta_1 \neq B_1$$

check whether B_1 falls within the confidence interval for the slope. If it does, reject the null hypothesis.

Example 8.9: Interpreting Confidence Intervals for Regression Coefficients

- For the Home Market Value data, a 95% confidence interval for the intercept is [14,823, 50,523], and for the slope, [24.59, 45.48].
- Although we estimated that a house with 1,750 square feet has a market value of 32,673 + 35.036(1,750) =\$93,986, if the true population parameters are at the extremes of the confidence intervals, the estimate might be as low as 14,823 + 24.59(1,750) = \$57,855 or as high as 50,523 + 45.48(1,750) = \$130,113.

Residual Analysis and Regression Assumptions

- Residual = Actual Y value Predicted Y value
- Standard residual = residual / standard deviation
- Rule of thumb: Standard residuals outside of ±2 or ±3 are potential outliers.
- Excel provides a table and a plot of residuals.

	A	В	С	D
22	RESIDUAL OUTPUT			
23				
24	Observation	Predicted Market Value	Residuals	Standard Residuals
25	1	96159.12702	-6159.127018	-0.855636403
26	2	99732.83702	4667.162978	0.64837022
27	3	97210.2182	-3910.218196	-0.543214164
28	4	96159.12702	-5159.127018	-0.716714702
29	5	96999.99996	4900.00004	0.680716341

This point has a standard residual of 4.53

Checking Assumptions

- Linearity
 - examine scatter diagram (should appear linear)
 - examine residual plot (should appear random)
- Normality of Errors
 - view a histogram of standard residuals
 - regression is robust to departures from normality
- Homoscedasticity: variation about the regression line is constant
 - examine the residual plot
- Independence of Errors: successive observations should not be related.
 - This is important when the independent variable is time.

Example 8.11: Checking Regression Assumptions for the *Home Market Value* **Data**

Linearity - linear trend in scatterplot
 no pattern in residual plot

Example 8.11 Continued

<u>Normality of Errors</u> – residual histogram appears slightly skewed but is not a serious departure

Example 8.11 Continued

Homoscedasticity – residual plot shows no serious difference in the spread of the data for different X values.

Example 8.11 Continued

 Independence of Errors – Because the data is cross-sectional, we can assume this assumption holds.

Multiple Linear Regression

A linear regression model with more than one independent variable is called a multiple linear regression model.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \varepsilon$$
(8.10)

where

Y is the dependent variable,

 X_1, \ldots, X_k are the independent (explanatory) variables,

 β_0 is the intercept term,

 β_1, \ldots, β_k are the regression coefficients for the independent variables, ε is the error term
Estimated Multiple Regression Equation

We estimate the regression coefficients—called partial regression coefficients — b₀, b₁, b₂, ... b_k, then use the model:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$
(8.11)

The partial regression coefficients represent the expected change in the dependent variable when the associated independent variable is increased by one unit while the values of all other independent variables are held constant.

Excel Regression Tool

- The independent variables in the spreadsheet must be in contiguous columns.
 - So, you may have to manually move the columns of data around before applying the tool.
- Key differences:
- Multiple R and R Square are called the multiple correlation coefficient and the coefficient of multiple determination, respectively, in the context of multiple regression.
- ANOVA tests for significance of the entire model. That is, it computes an F-statistic for testing the hypotheses:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

 H_1 : at least one β_j is not 0

ANOVA for Multiple Regression

ANOVA tests for significance of the entire model. That is, it computes an F-statistic for testing the hypotheses:

 $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$

 H_1 : at least one β_j is not 0

- The multiple linear regression output also provides information to test hypotheses about *each* of the individual regression coefficients.
 - If we reject the null hypothesis that the slope associated with independent variable *i* is 0, then the independent variable *i* is significant and improves the ability of the model to better predict the dependent variable. If we cannot reject H0, then that independent variable is not significant and probably should not be included in the model.

Example 8.12: Interpreting Regression Results for the *Colleges and Universities* Data

Predict student graduation rates using several

nΓ	1	А	В	С	D	E	F	G
	1	Colleges and Universities						
	2							
	3	School	Туре	Median SAT	Acceptance Rate	Expenditures/Student	Top 10% HS	Graduation %
	4	Amherst	Lib Arts	1315	22%	\$ 26,636	85	93
	5	Barnard	Lib Arts	1220	53%	\$ 17,653	69	80
	6	Bates	Lib Arts	1240	36%	\$ 17,554	58	88
	7	Berkeley	University	1176	37%	\$ 23,665	95	68
	8	Bowdoin	Lib Arts	1300	24%	\$ 25,703	78	90
	9	Brown	University	1281	24%	\$ 24,201	80	90

Example 8.12 Continued

Regression model

	A	В	С	D	E	F	G		
1	SUMMARY OUTPUT								
2									
3	Regressio	n Statistics	Gradu	ation% — 1	702 ± 00	70 CAT _ 0			
4	Multiple R	0.731044486	Gradua		1.92 + 0.0	123A1 - 2	4.039 ACCI		
5	R Square	0.534426041		– 0.000136 EXPENDITURES					
6	Adjusted R Square	0.492101135							
7	Standard Error	5.30833812			0.103 10	P10% H5			
8	Observations	49							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	4	1423.209266	355.8023166	12.62675098	6.33158E-07			
13	Residual	44	1239.851958	28.1784536					
14	Total	48	2663.061224						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
17	Intercept	17.92095587	24.55722367	0.729763108	0.469402466	-31.57087643	67.41278818		
18	Median SAT	0.072006285	0.017983915	4.003927007	0.000236106	0.035762085	0.108250485		
19	Acceptance Rate	-24.8592318	8.315184822	-2.989618672	0.004559569	-41.61738567	-8.101077939		
20	Expenditures/Student	-0.00013565	6.59314E-05	-2.057438385	0.045600178	-0.000268526	-2.77379E-06		
21	Top 10% HS	-0.162764489	0.079344518	-2.051364015	0.046213848	-0.322672857	-0.00285612		

- The value of R² indicates that 53% of the variation in the dependent variable is explained by these independent variables.
 - All coefficients are statistically significant.

Model Building Issues

- A good regression model should include only significant independent variables.
- However, it is not always clear exactly what will happen when we add or remove variables from a model; variables that are (or are not) significant in one model may (or may not) be significant in another.
 - Therefore, you should not consider dropping all insignificant variables at one time, but rather take a more structured approach.
- Adding an independent variable to a regression model will always result in R^2 equal to or greater than the R^2 of the original model.
- Adjusted R² reflects both the number of independent variables and the sample size and may either increase or decrease when an independent variable is added or dropped. An increase in adjusted R² indicates that the model has improved.

Systematic Model Building Approach

- Construct a model with all available independent variables. Check for significance of the independent variables by examining the p-values.
- 2. Identify the independent variable having the largest pvalue that exceeds the chosen level of significance.
- 3. Remove the variable identified in step 2 from the model and evaluate adjusted R^2 .

(Don't remove all variables with p-values that exceed a at the same time, but remove only one at a time.)

4. Continue until all variables are significant.

Example 8.13: Identifying the Best Regression Model

Banking Data

Home value has the largest p-value; drop and re-run the regression.

1	A	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression	Statistics					
4	Multiple R	0.97309221					
5	R Square	0.946908448					
6	Adjusted R Square	0.944143263					
7	Standard Error	2055.64333					
8	Observations	102					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	5	7235179873	1447035975	342.4394584	1.5184E-59	
13	Residual	96	405664271.9	4225669.499			
14	Total	101	7640844145				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	-10710.64278	4260.976308	-2.513659314	0.013613179	-19168.61391	-2252.671659
18	Age	318.6649626	60.98611242	5.225205378	1.01152E-06	197.6084862	439.721439
19	Education	621.8603472	318.9595184	1.949652891	0.054135377	-11.26929279	1254.989987
20	Income	0.146323453	0.040781001	3.588029937	0.000526666	0.065373806	0.227273101
21	Home Value	0.009183067	0.011038075	0.831944635	0.407504891	-0.012727338	0.031093473
22	Wealth	0.074331533	0.011189265	6.643111131	1.84838E-09	0.052121017	0.096542049
_							

Example 8.13 Continued

Bank regression after removing Home Value

	Α	В	С	D	E	F	G		
1	SUMMARY OUTPUT								
2									
3	Regression	Statistics							
4	Multiple R	0.97289551							
5	R Square	0.946525674	Aajust	Adjusted R ² improves slightly.					
6	Adjusted R Square	0.944320547		All X variables are significant					
7	Standard Error	2052.378536		All A variables are significant.					
8	Observations	102							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	4	7232255152	1808063788	429.2386497	9.68905E-61			
13	Residual	97	408588992.5	4212257.655					
14	Total	101	7640844145						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
17	Intercept	-12432.45673	3718.674319	-3.343249681	0.001177705	-19812.99587	-5051.917589		
18	Age	325.0652837	60.40284468	5.381622098	5.1267E-07	205.1823574	444.9482101		
19	Education	773.3800418	261.4330936	2.958233142	0.003886994	254.5077194	1292.252364		
20	Income	0.159747379	0.037393587	4.272052794	4.52422E-05	0.085531459	0.233963298		
21	Wealth	0.072988791	0.011054665	6.602532898	2.16051E-09	0.051048341	0.094929242		

Alternate Criterion

Use the t-statistic.

- If | t | < 1, then the standard error will decrease and adjusted R² will increase if the variable is removed. If | t | > 1, then the opposite will occur.
- You can follow the same systematic approach, except using t-values instead of p-values.

Multicollinearity

- Multicollinearity occurs when there are strong correlations among the independent variables, and they can predict each other better than the dependent variable.
 - When significant multicollinearity is present, it becomes difficult to isolate the effect of one independent variable on the dependent variable, the signs of coefficients may be the opposite of what they should be, making it difficult to interpret regression coefficients, and *p*-values can be inflated.
 - Correlations exceeding ±0.7 may indicate multicollinearity
 - The variance inflation factor is a better indicator, but not computed in Excel.

Example 8.14: Identifying Potential Multicollinearity

 Colleges and Universities correlation matrix; none exceed the recommend threshold of ±0.7

	Α	В	С	D	E	F
1		Median SAT	Acceptance Rate	Expenditures/Student	Top 10% HS	Graduation %
2	Median SAT	1				
3	Acceptance Rate	-0.601901959	1			
4	Expenditures/Student	0.572741729	-0.284254415	1		
5	Top 10% HS	0.503467995	-0.609720972	0.505782049	1	
6	Graduation %	0.564146827	-0.55037751	0.042503514	0.138612667	1

Banking Data correlation matrix; large correlations exist

	Α	В	С	D	E	F	G
1		Age	Education	Income	Home Value	Wealth	Balance
2	Age	1					
3	Education	0.173407147	1				
4	Income	0.4771474	0.57539402	1			
5	Home Value	0.386493114	0.753521067	0.795355158	1		
6	Wealth	0.468091791	0.469413035	0.946665447	0.698477789	1	
7	Balance	0.565466834	0.55488066	0.951684494	0.766387128	0.948711734	1

Example 8.14 Continued

- If we remove Wealth from the model, the adjusted R² drops to 0.9201, but we discover that Education is no longer significant.
- Dropping Education and leaving only Age and Income in the model results in an adjusted R² of 0.9202.
- However, if we remove Income from the model instead of Wealth, the Adjusted R² drops to only 0.9345, and all remaining variables (Age, Education, and Wealth) are significant.

1	A	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression St	atistics					
4	Multiple R	0.967710981					
5	R Square	0.936464543					
6	Adjusted R Square	0.93451958					
7	Standard Error	2225.695322					
8	Observations	102					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	7155379617	2385126539	481.4819367	1.71667E-58	
13	Residual	98	485464527.3	4953719.667			
14	Total	101	7640844145				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	-17732.45142	3801.662822	-4.664393517	9.79978E-06	-25276.72757	-10188.17528
18	Age	367.8214086	64.59823831	5.693985134	1.2977E-07	239.6283071	496.0145102
19	Education	1300.308712	249.9731413	5.201793703	1.08292E-06	804.2451489	1796.372276
20	Wealth	0.116467903	0.004679827	24.88722652	3.75813E-44	0.107180939	0.125754866

Practical Issues in Trendline and Regression Modeling

- Identifying the best regression model often requires experimentation and trial and error.
- The independent variables selected should make sense in attempting to explain the dependent variable
 - Logic should guide your model development. In many applications, behavioral, economic, or physical theory might suggest that certain variables should belong in a model.
- Additional variables increase R² and, therefore, help to explain a larger proportion of the variation.
 - Even though a variable with a large p-value is not statistically significant, it could simply be the result of sampling error and a modeler might wish to keep it.
- Good models are as simple as possible (the principle of **parsimony**).

Overfitting

- Overfitting means fiting a model too closely to the sample data at the risk of not fitting it well to the population in which we are interested.
 - In fitting the crude oil prices in Example 8.2, we noted that the R²-value will increase if we fit higher-order polynomial functions to the data. While this might provide a better mathematical fit to the sample data, doing so can make it difficult to explain the phenomena rationally.
- In multiple regression, if we add too many terms to the model, then the model may not adequately predict other values from the population.
- Overfitting can be mitigated by using good logic, intuition, theory, and parsimony.

Regression with Categorical Variables

- Regression analysis requires numerical data.
- Categorical data can be included as independent variables, but must be coded numeric using *dummy variables.*
- For variables with 2 categories, code as 0 and 1.

Example 8.15: A Model with Categorical Variables

Employee Salaries provides data for 35 employees

	A		В	С	D
1	Employee Sa	alar	y Data		
2					
3	Employee	Salary		Age	MBA
4	1	\$	28,260	25	No
5	2	\$	43,392	28	Yes
6	3	\$	56,322	37	Yes
7	4	\$	26,086	23	No
8	5	\$	36,807	32	No

Predict Salary using Age and MBA (code as yes=1, no=0) $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$

where

$$Y = \text{salary}$$

 $X_1 = \text{age}$
 $X_2 = \text{MBA indicator (0 or 1)}$

Example 8.15 Continued

- Salary = 893.59 + 1044.15 × Age + 14767.23 × MBA
 - If MBA = 0, salary = 893.59 + 1044 × Age
 - If MBA = 1, salary =15,660.82 + 1044 × Age

	Α	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression Sta	atistics					
4	Multiple R	0.976118476					
5	R Square	0.952807278					
6	Adjusted R Square	0.949857733					
7	Standard Error	2941.914352					
8	Observations	35					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	5591651177	2795825589	323.0353318	6.05341E-22	
13	Residual	32	276955521.7	8654860.054			
14	Total	34	5868606699				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	893.5875971	1824.575283	0.489751015	0.627650922	-2822.950634	4610.125828
18	Age	1044.146043	42.14128238	24.77727265	1.8878E-22	958.3070599	1129.985026
19	MBA	14767.23159	1351.801764	10.92411031	2.49752E-12	12013.7015	17520.76168

Interactions

- An interaction occurs when the effect of one variable is dependent on another variable.
- We can test for interactions by defining a new variable as the product of the two variables, X3 = X1 × X2, and testing whether this variable is significant, leading to an alternative model.

$$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{X}_1 + \boldsymbol{\beta}_2 \boldsymbol{X}_2 + \boldsymbol{\beta}_3 \boldsymbol{X}_3 + \boldsymbol{\varepsilon}$$

Example 8.16: Incorporating Interaction Terms in a Regression Model

 Define an interaction between Age and MBA and re-run the regression.

	Α		в	С	D	E
1	Employee Sa	alar	y Data			
2						
3	Employee		Salary	Age	MBA	Interaction
4	1	\$	28,260	25	0	0
5	2	\$	43,392	28	1	28
6	3	\$	56,322	37	1	37
7	4	\$	26,086	23	0	0

	Α	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression St	atistics					
4	Multiple R	0.989321416					
5	R Square	0.978756863					
6	Adjusted R Square	0.976701076					
7	Standard Error	2005.37675					
8	Observations	35					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	5743939086	1914646362	476.098288	5.31397E-26	
13	Residual	31	124667613.2	4021535.91			
14	Total	34	5868606699				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	3902.509386	1336.39766	2.920170772	0.006467654	1176.908389	6628.110383
18	Age	971.3090382	31.06887722	31.26308786	5.23658E-25	907.9436454	1034.674431
19	MBA	-2971.080074	3026.24236	-0.98177202	0.333812767	-9143.142058	3200.981911
20	Interaction	501.8483604	81.55221742	6.153705887	7.9295E-07	335.5215164	668.1752044

The MBA indicator is not significant; drop and re-run.

Example 8.16 Continued

Adjusted R² increased slightly, and both age and the interaction term are significant. The final model is

salary = 3,323.11 + 984.25 × age + 425.58 × MBA ×

$\mathbf{\Omega}$	\sim	$\mathbf{\mathbf{n}}$
a	Ч	E

1	А	В	С	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression St	atistics					
4	Multiple R	0.98898754					
5	R Square	0.978096355					
6	Adjusted R Square	0.976727377					
7	Standard Error	2004.24453					
8	Observations	35					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	5740062823	2870031411	714.4720368	2.80713E-27	
13	Residual	32	128543876.4	4016996.136			
14	Total	34	5868606699				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	3323.109564	1198.353141	2.773063675	0.009184278	882.1440943	5764.075033
18	Age	984.2455409	28.12039088	35.00113299	4.40388E-27	926.9661791	1041.524903
19	Interaction	425.5845915	24.81794165	17.14826304	1.08793E-17	375.0320986	476.1370843

Categorical Variables with More Than Two Levels

When a categorical variable has k > 2 levels, we need to add k - 1 additional variables to the model.

Example 8.17: A Regression Model with Multiple Levels of Categorical Variables

The Excel file Surface *Finish* provides measurements of the surface finish of 35 parts produced on a lathe, along with the revolutions per minute (RPM) of the spindle and one of four types of cutting tools used.

	A	B	с	D
1	Surface F	inish Data		
2				
3	Part	Surface Finish	RPM	Cutting Tool
4	1	45.44	225	A
5	2	42.03	200	A
6	3	50.10	250	A
7	4	48.75	245	A
8	5	47.92	235	A
9	6	47.79	237	A
10	7	52.26	265	A
11	8	50.52	259	A
12	9	45.58	221	A
13	10	44.78	218	A
14	11	33.50	224	B
15	12	31.23	212	B
16	13	37.52	248	B
17	14	37.13	260	B
18	15	34.70	243	B

Example 8.17 Continued

Because we have k = 4 levels of tool type, we will define a regression model of the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

where

Y = surface finish $X_1 = RPM$ $X_2 = 1 \text{ if tool type is B and 0 if not}$ $X_3 = 1 \text{ if tool type is C and 0 if not}$ $X_4 = 1 \text{ if tool type is D and 0 if not}$

Example 8.17 Continued

 Add 3 columns to the data, one for each of the tool type variables

1	A	В	С	D	E	F
1	Surface F	inish Data				
2						
3	Part	Surface Finish	RPM	Type B	Туре С	Type D
4	1	45.44	225	0	0	0
5	2	42.03	200	0	0	0
6	3	50.10	250	0	0	0
7	4	48.75	245	0	0	0
8	5	47.92	235	0	0	0
9	6	47.79	237	0	0	0
10	7	52.26	265	0	0	0
11	8	50.52	259	0	0	0
12	9	45.58	221	0	0	0
13	10	44.78	218	0	0	0
14	11	33.50	224	1	0	0
15	12	31.23	212	1	0	0
16	13	37.52	248	1	0	0
17	14	37.13	260	1	0	0
18	15	34.70	243	1	0	0
19	16	33.92	238	1	0	0
20	17	32.13	224	1	0	0
21	18	35.47	251	1	0	0
22	19	33.49	232	1	0	0
23	20	32.29	216	1	0	0
24	21	27.44	225	0	1	0
25	22	24.03	200	0	1	0
26	23	27.33	250	0	1	0
27	24	27.20	245	0	1	0
28	25	27.10	235	0	1	0
29	26	27.30	237	0	1	0
30	27	28.30	265	0	1	0
31	28	28.40	259	0	1	0
32	29	26.80	221	0	1	0
33	30	26.40	218	0	1	0
34	31	21.40	224	0	0	1
35	32	20.50	212	0	0	1
36	33	21.90	248	0	0	1
37	34	22.13	260	0	0	1
38	35	22.40	243	0	0	1

Example 8.17 Continued

Regression results

	A	В	с	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression St	atistics					
4	Multiple R	0.994447053					
5	R Square	0.988924942					
6	Adjusted R Square	0.987448267					
7	Standard Error	1.089163115					
8	Observations	35					
9							
10	ANOVA						
11		đť	<i>SS</i>	MS	F	Significance F	
12	Regression	4	3177.784271	794.4460678	669.6973322	7.32449E-29	
13	Residual	30	35.58828875	1.186276292			
14	Total	34	3213.37256				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	24.49437244	2.473298088	9.903526211	5.73134E-11	19.44322388	29.54552101
18	RPM	0.097760627	0.010399996	9.400064035	1.89415E-10	0.076521002	0.119000252
19	Туре В	-13.31056756	0.487142953	-27.32374035	9.37003E-23	-14.3054462	-12.31568893
20	Туре С	-20.487	0.487088553	-42.06011387	3.12134E-28	-21.48176754	-19.49223246
21	Type D	-26.03674519	0.596886375	-43.62094073	1.06415E-28	-27.25574979	-24.81774059

Surface finish = 24.49 + 0.098 RPM - 13.31 type B - 20.49 type C - 26.04 type D

Regression Models with Nonlinear Terms

- Curvilinear models may be appropriate when scatter charts or residual plots show nonlinear relationships.
- A second order polynomial might be used

 $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$

- Here β_1 represents the linear effect of X on Y and β_2 represents the curvilinear effect.
- This model is linear in the β parameters so we can use linear regression methods.

Example 8.18: Modeling Beverage Sales Using Curvilinear Regression

The U-shape of the residual plot (a second-order polynomial trendline was fit to the residual data) suggests that a linear relationship is not appropriate.

	А	В
1	Beverage Sales	
2		
3	Temperature	Sales
4	85	\$ 1,810
5	90	\$ 4,825
6	79	\$ 438
7	82	\$ 775
8	84	\$ 1,213
9	96	\$ 8,692

	А	В	с	D	E	F	G
1	SUMMARY OUTPUT		[
2			Temr	erature	Residual	Plot	
3	Regression S	tatistics	, cink	ciatare	nesidadai		
4	Multiple R	0.922351218	ר ⁵⁰⁰⁰ ז				
5	R Square	0.850731769	-se	٠		**	
6	Adjusted R Square	0.842875547	1 g 0 +		Hand I		
7	Standard Error	1041.057399	<u>2</u> 70	80	90	100	
8	Observations	21	-5000				
9				Te	mperature		
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	1	117362193.6	117362193.6	108.2876347	2.7611E-09	
13	Residual	19	20592209.67	1083800.509			
14	Total	20	137954403.2				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	-32511.24671	3408.723477	-9.53766034	1.12197E-08	-39645.78695	-25376.70648
18	Temperature	408.6026284	39.26555335	10.40613447	2.7611E-09	326.4188807	490.786376

Example 8.18 Continued

- Add a variable for temperature squared.
- The model is:

sales = $142,850 - 3,643.17 \times \text{temperature} + 23.3 \times \text{temperature}^2$

	Α	В	С	D		E	F	G
1	SUMMARY OUTPUT							
2			Tem	perature		י ו	femp^2 Resid	ual Plot
3	Regression S	tatistics	Resi	dual Plot		:	ר 2000	
4	Multiple R	0.973326989	2000 -				1000 -	* •
5	R Square	0.947365428		* •		ra l		
6	Adjusted R Square	0.941517142			<u> </u>	si		10000
7	Standard Error	635.1365123	<u>≣</u> 70	80 90	100	ĕ.;	10000000 80	
8	Observations	21		• •			2000	·
9			1	Temperature			Ten	np^2
10	ANOVA		1			L		
11		df	SS	MS		-	Significance F	
12	Regression	2	130693232.2	65346616.12	161.9	902753	3.10056E-12	
13	Residual	18	7261171.007	403398.3893				
14	Total	20	137954403.2					
15								
16		Coefficients	Standard Error	t Stat	P-vo	alue	Lower 95%	Upper 95%
17	Intercept	142850.3406	30575.70155	4.672021683	0.000	189738	78613.17532	207087.5059
18	Temperature	-3643.171723	705.2304165	-5.165931075	6.4	92E-05	-5124.805849	-2161.537598
19	Temp ²	23.30035581	4.053196314	5.748637374	1.893	43E-05	14.78490634	31.81580528

Advanced Techniques for Regression Modeling using XLMiner

- The regression analysis tool in XLMiner has some advanced options not available in Excel's Descriptive Statistics tool.
- Best-subsets regression evaluates either all possible regression models for a set of independent variables or the best subsets of models for a fixed number of independent variables.

Evaluating Best Subsets Models

- Best subsets evaluates models using a statistic called Cp, (the Bonferroni criterion).
 - *Cp* estimates the bias introduced in the estimates of the responses by having an *underspecified model* (a model with important predictors missing).
 - If Cp is much greater than (the number of independent variables plus 1), there is substantial bias. The full model always has Cp = k + 1.
 - If all models except the full model have large Cps, it suggests that important predictor variables are missing. Models with a minimum value or having Cp less than or at least close to are good models to consider.

Best-Subsets Procedures

- <u>Backward Elimination</u> begins with all independent variables in the model and deletes one at a time until the best model is identified.
- Forward Selection begins with a model having no independent variables and successively adds one at a time until no additional variable makes a significant contribution.
- <u>Stepwise Selection</u> is similar to Forward Selection except that at each step, the procedure considers dropping variables that are not statistically significant.
- <u>Sequential Replacement</u> replaces variables sequentially, retaining those that improve performance. These options might terminate with a different model.
- Exhaustive Search looks at all combinations of variables to find the one with the best fit, but it can be time consuming for large numbers of variables.

Example 8.19: Using *XLMiner* for Regression

- Click the Predict button in the Data Mining group and choose Multiple Linear Regression.
- Enter the range of the data (including headers)
- Move the appropriate variables to the boxes on the right.

1			5	So.	1,61	\checkmark		?	?	?	Ø	.
Sample	Explore	Transform	Cluster	Partition	ARIMA	Smoothing	Partition	Classify	Predict	Associate	Score	Help
-	-	-	•		•	•	-	•	•	•		•
	Data	Analysis			Time Se	ries		Data	Mining		То	ols

Vorksheet: Banking Da	ta 💌	Workbook:	anking Data.xlsx	-
Data range: \$A\$4:\$F\$10	06		# Columns:	6
# Rows In training 102	In validation s	et:	In test set:	
Variables	ders			
Yanabies in input data	2	Input variab Age Education Income Home Val Weight varia	ue able:	
Not applicable for pred # Classes: Sp Sgedf	iction	Balance	success:	V
Help	Ca	ncel < Bac	k Next >	Einish
Click this to select / desel	ect the output va	riable from the	variables list.	

Example 8.19 Continued

- Select the output options and check the Summary report box.
 Before clicking Finish, click on the Best subsets button.
- Select the best subsets option:

Best Subset]
Maximum size of best subset:	5 ÷ Number of best subsets: 1 ÷
Selection procedure	C Eorward selection
C Exhaustive search	C Sequential
C Stepwise selection	
FIN:	FQUT:
Help	OK Cancel
If opted, best subset selection i	is done.

Example 8.19 Continued

View results from the "Output Navigator" links.

	Α	B	С	D	E	F	G	Н		J
1		XLMiner	: Multiple	Linear Re	gression					
23		(Output Navigat	or						
4		Inputs	Train. Score	e - Summary	Valid. Score	e - Summary	Test Score	- Summary	Datab	ase Score
5		Elapsed Time	Train. Score -	Detailed Rep.	Valid. Score -	Detailed Rep.	Test Score -	Detailed Rep.	New Score	- Detailed Rep.
6		ANOVA	Training I	Lift Charts	Validation	Lift Charts	Test Lif	t Charts	Subse	t selection
7		Reg. Model	<u>Fitted</u>	Values	Var. Cov	ar. Matrix	Collinearity	Diagnostics		

Example 8.19 Continued

Regression output (all variables)

Input variables	Coefficient	Std. Error	p-value	\$\$			
Constant term	-10710.64063	4260.976074	0.01361319	63179490000		Residual df	
Age	318.6649475	60.98611069	0.00000101	2443181000		R-squared	0.946908
Education	621.8602905	318.9594727	0.05413537	1643993000		Std. Dev. estimate	2055.643
Income	0.14632344	0.040781	0.00052667	2961454000		Residual SS	405664
Home Value	0.00918307	0.01103808	0.40750477	68818.42188			
Wealth	0.07433154	0.01118927	0	186482700			
Source	df	\$\$	MS	F-statistic	p-value	I	
Source Regression	df 5	\$\$ 7235179518	MS	F-statistic 342.4394179	p-value 1.51841E-59		
Source Regression Error	df 5 96	SS 7235179518 405664300	MS 1447035904 4225669.792	F-statistic 342.4394179	p-value 1.51841E-59		

Best subsets results

Best subset selection												
1	#Coolfo	RSS	Ср	R-Squared	Adj. R- Squared	Probability	Model (Constant present in all models)					
	#Coens						1	2	3	4	5	6
Choose Subset	2	720505856	72.5069046	0.90570337	0.904760403	0	Constant	Income		•	•	*
Choose Subset	3	552461888	34.73949051	0.927696223	0.926235541	0.00000139	Constant	Income	Wealth	•	•	*
Choose Subset	4	445451072	11.41549969	0.941701327	0.939916674	0.01116341	Constant	Age	Income	Wealth	•	•
Choose Subset	5	408588992	4.69212961	0.946525674	0.944320547	0.40748432	Constant	Age	Education	Income	Wealth	
Choose Subset	6	405664288	6.00000191	0.946908446	0.944143261	1	Constant	Age	Education	Income	Home Value	Wealth

If you click "Choose Subset," XLMiner will create a new worksheet with the results for this model.
Interpreting XLMiner Output

- Typically choose the model with the highest adjusted R^2 .
- Models with a minimum value of Cp or having Cp less than or at least close to k + 1 are good models to consider.
- RSS is the residual sum of squares, or the sum of squared deviations between the predicted probability of success and the actual value (1 or 0).
- Probability is a quasi-hypothesis test that a given subset is acceptable; if this is less than 0.05, you can rule out that subset.

Google Analytics Project 4 Email me (<u>albert.kalim@asbury.edu</u>) your answers by Sunday, 6/19,11:59 p.m. ET (10 points total)

Log in to your Google Analytics dashboard <u>here</u> and click Sign in to Analytics.

After you logged in, focus on the Acquisition tools on the left-hand side. Pick a channel with data (all traffic or social) and **list two business recommendations on how to improve the acquisition** <u>and</u> **elaborate on them**. You will be graded based on your familiarity with the tools and how you read/interpret the data.