


 Create charts to better understand data sets.
 For cross-sectional data, use a scatter chart.
 For time series data, use a line chart.



Linear                           y = a + bx
Logarithmic                  y = ln(x)
Polynomial (2nd order)  y = ax2 + bx + c
Polynomial (3rd order)  y = ax3 + bx2 + dx + e
Power                          y = axb

Exponential                 y = abx

(the base of natural logarithms, e = 2.71828…is often used 
for the constant b)



 Right click on data series 
and choose Add trendline
from pop-up menu

 Check the boxes Display 
Equation on chart and 
Display R-squared value 
on chart



 R2 (R-squared) is a measure of the “fit” of the line 
to the data.
◦ The value of R2 will be between 0 and 1. 
◦ A value of 1.0 indicates a perfect fit and all data points 

would lie on the line; the larger the value of R2 the better 
the fit.



Linear demand function: 
Sales = 20,512 - 9.5116(price) 



 Line chart of historical crude oil prices



 Excel’s Trendline tool is used to fit various functions to the 
data.

Exponential y = 50.49e0.021x R2 = 0.664
Logarithmic y = 13.02ln(x) + 39.60            R2 = 0.382
Polynomial 2° y = 0.13x2 − 2.399x + 68.01   R2 = 0.905
Polynomial 3° y = 0.005x3 − 0.111x2

+ 0.648x + 59.497         R2 = 0.928 *
Power               y = 45.96x0.0169 R2 = 0.397



 Third order polynomial trendline fit to the data

Figure 8.11



 The R2 value will continue to increase as the order 
of the polynomial increases; that is, a 4th order 
polynomial will provide a better fit than a 3rd order, 
and so on.  

 Higher order polynomials will generally not be very 
smooth and will be difficult to interpret visually.  
◦ Thus, we don't recommend going beyond a third-order 

polynomial when fitting data. 
 Use your eye to make a good judgment!



 Regression analysis is a tool for building 
mathematical and statistical models that 
characterize relationships between a dependent 
(ratio) variable and one or more independent, or 
explanatory variables (ratio or categorical), all of 
which are numerical.

 Simple linear regression involves a single 
independent variable.

 Multiple regression involves two or more 
independent variables.



 Finds a linear relationship between:
- one independent variable X and 
- one dependent variable Y

 First prepare a scatter plot to verify the data has a 
linear trend.

 Use alternative approaches if the data is not linear.  



Size of a house is 
typically related to its 
market value.
X = square footage
Y = market value ($)
The scatter plot of the full 
data set (42 homes) 
indicates a linear trend.



 Market value = a + b × square feet
 Two possible lines are shown below.

 Line A is clearly a better fit to the data.
 We want to determine the best regression line.



 Market value = 32,673 + $35.036 × square feet
◦ The estimated market value of a home with 2,200 square feet 

would be: market value = $32,673 + $35.036 × 2,200 = $109,752

The regression model 
explains variation in 
market value  due to 
size of the home.  
It provides better 
estimates of market 
value than simply 
using the average.



 Simple linear regression model:

 We estimate the parameters from the sample data:

 Let Xi be the value of the independent variable of the ith
observation. When the value of the independent 
variable is Xi, then Yi = b0 + b1Xi is the estimated value 
of Y for Xi.



 Residuals are the observed errors associated 
with estimating the value of the dependent 
variable using the regression line:



 The best-fitting line minimizes the sum of squares of the 
residuals.

 Excel functions:
◦ =INTERCEPT(known_y’s, known_x’s) 
◦ =SLOPE(known_y’s, known_x’s)



 Slope = b1 = 35.036
=SLOPE(C4:C45, B4:B45)

 Intercept = b0 = 32,673
=INTERCEPT(C4:C45, B4:B45)

 Estimate Y when X = 1750 square feet
Y = 32,673 + 35.036(1750) = $93,986
=TREND(C4:C45, B4:B45, 1750)

^



Data > Data Analysis >
Regression
Input Y Range (with 
header)
Input X Range (with 
header)
Check Labels

Excel outputs a table with 
many useful regression 
statistics.





 Multiple R - | r |, where r is the sample correlation 
coefficient. The value of r varies from -1 to +1 (r is 
negative if slope is negative) 

 R Square - coefficient of determination, R2, which
varies from 0 (no fit) to 1 (perfect fit)

 Adjusted R Square - adjusts R2 for sample size 
and number of X variables

 Standard Error - variability between observed 
and  predicted Y values. This is formally called the 
standard error of the estimate, SYX.



53% of the variation in home market values 
can be explained by home size.
The standard error of $7287 is less than 
standard deviation (not shown) of $10,553.



ANOVA conducts an F-test to determine whether 
variation in Y is due to varying levels of X.

ANOVA is used to test for significance of regression:
H0: population slope coefficient = 0
H1: population slope coefficient ≠ 0

Excel reports the p-value (Significance F).
Rejecting H0 indicates that X explains variation in Y.



Home size is not a significant variable
Home size is a significant variable

 p-value = 3.798 x 10-8

◦ Reject H0: The slope is not equal to zero. Using a linear 
relationship, home size is a significant variable in explaining 
variation in market value. 



 An alternate method for testing whether a slope or 
intercept is zero is to use a t-test:

 Excel provides the p-values for tests on the slope and 
intercept.



 Use p-values to draw conclusion

 Neither coefficient is statistically equal to zero.



 Confidence intervals (Lower 95% and Upper 95%
values in the output) provide information about the 
unknown values of the true regression 
coefficients, accounting for sampling error.

 We may also use confidence intervals to test 
hypotheses about the regression coefficients.
◦ To test the hypotheses

check whether B1 falls within the confidence interval for the 
slope.  If it does, reject the null hypothesis.



 For the Home Market Value data, a 95% confidence 
interval for the intercept is [14,823, 50,523], and for the 
slope, [24.59, 45.48].

 Although we estimated that a house with 1,750 square 
feet has a market value of 32,673 + 35.036(1,750) 
=$93,986, if the true population parameters are at the 
extremes of the confidence intervals, the estimate might 
be as low as 14,823 + 24.59(1,750) = $57,855 or as high 
as 50,523 + 45.48(1,750) = $130,113.



 Residual = Actual Y value − Predicted Y value
 Standard residual = residual / standard deviation
 Rule of thumb: Standard residuals outside of ±2 

or ±3 are potential outliers.
 Excel provides a table and a plot of residuals. 

This point has a standard 
residual of 4.53



 Linearity
 examine scatter diagram (should appear linear)
 examine residual plot (should appear random)

 Normality of Errors
 view a histogram of standard residuals 
 regression is robust to departures from normality

 Homoscedasticity: variation about the regression line is 
constant
 examine the residual plot

 Independence of Errors: successive observations should 
not be related. 
 This is important when the independent variable is time.



 Linearity - linear trend in scatterplot
- no pattern in residual plot



Normality of Errors – residual histogram appears 
slightly skewed but is not a serious departure



 Homoscedasticity – residual plot shows no serious 
difference in the spread of the data for different X
values.



 Independence of Errors – Because the data is 
cross-sectional, we can assume this assumption 
holds.



 A linear regression model with more than one 
independent variable is called a multiple linear 
regression model.



 We estimate the regression coefficients—called 
partial regression coefficients — b0, b1, b2,… bk, 
then use the model:

 The partial regression coefficients represent the 
expected change in the dependent variable when 
the associated independent variable is increased 
by one unit while the values of all other 
independent variables are held constant.



 The independent variables in the spreadsheet must be 
in contiguous columns. 
◦ So, you may have to manually move the columns of data around 

before applying the tool.
 Key differences: 
 Multiple R and R Square are called the multiple 

correlation coefficient and the coefficient of multiple 
determination, respectively, in the context of multiple 
regression.

 ANOVA tests for significance of the entire model.  That 
is, it computes an F-statistic for testing the hypotheses:



 ANOVA tests for significance of the entire model.  That 
is, it computes an F-statistic for testing the hypotheses:

 The multiple linear regression output also provides 
information to test hypotheses about each of the 
individual regression coefficients.
◦ If we reject the null hypothesis that the slope associated with 

independent variable i is 0, then the independent variable i is 
significant and improves the ability of the model to better predict 
the dependent variable. If we cannot reject H0, then that 
independent variable is not significant and probably should not be 
included in the model.



 Predict student graduation rates using several 
indicators:



 Regression model

 The value of R2 indicates that 53% of the variation in the dependent 
variable is explained by these independent variables.

 All coefficients are statistically significant.



 A good regression model should include only significant 
independent variables. 

 However, it is not always clear exactly what will happen when we 
add or remove variables from a model; variables that are (or are not) 
significant in one model may (or may not) be significant in another. 
◦ Therefore, you should not consider dropping all insignificant variables at 

one time, but rather take a more structured approach.
 Adding an independent variable to a regression model will always 

result in R2 equal to or greater than the R2 of the original model. 
 Adjusted R2 reflects both the number of independent variables and 

the sample size and may either increase or decrease when an 
independent variable is added or dropped. An increase in adjusted 
R2 indicates that the model has improved.



1. Construct a model with all available independent 
variables. Check for significance of the independent 
variables by examining the p-values.

2. Identify the independent variable having the largest p-
value that exceeds the chosen level of significance. 

3. Remove the variable identified in step 2 from the 
model and evaluate adjusted R2. 

(Don’t remove all variables with p-values that exceed a at the 
same time, but remove only one at a time.) 

4. Continue until all variables are significant.



 Banking Data

Home value has the 
largest p-value; drop 
and re-run the 
regression.



 Bank regression after removing Home Value

Adjusted R2 improves slightly.  
All X variables are significant.



 Use the t-statistic.
 If | t | < 1, then the standard error will decrease 

and adjusted R2 will increase if the variable is 
removed. If | t | > 1, then the opposite will occur.

 You can follow the same systematic approach, 
except using t-values instead of p-values.



 Multicollinearity occurs when there are strong 
correlations among the independent variables, and they 
can predict each other better than the dependent variable.
◦ When significant multicollinearity is present, it becomes difficult to 

isolate the effect of one independent variable on the dependent 
variable, the signs of coefficients may be the opposite of what they 
should be, making it difficult to interpret regression coefficients, and 
p-values can be inflated.

 Correlations exceeding ±0.7 may indicate multicollinearity
 The variance inflation factor is a better indicator, but not 

computed in Excel.



 Colleges and Universities correlation matrix; none 
exceed the recommend threshold of ±0.7

 Banking Data correlation matrix; large correlations exist



 If we remove Wealth from the model, the adjusted R2 drops to 
0.9201, but we discover that Education is no longer significant. 

 Dropping Education and leaving only Age and Income in the model 
results in an adjusted R2 of 0.9202.

 However, if we remove Income from the model instead of Wealth, 
the Adjusted R2 drops to only 0.9345, and all remaining variables 
(Age, Education, and Wealth) are significant. 



 Identifying the best regression model often requires 
experimentation and trial and error.

 The independent variables selected should make sense in 
attempting to explain the dependent variable 
◦ Logic should guide your model development. In many applications, 

behavioral, economic, or physical theory might suggest that certain 
variables should belong in a model.

 Additional variables increase R2 and, therefore, help to explain 
a larger proportion of the variation. 
◦ Even though a variable with a large p-value is not statistically significant, it 

could simply be the result of sampling error and a modeler might wish to 
keep it.

 Good models are as simple as possible (the principle of 
parsimony).



 Overfitting means fiting a model too closely to the 
sample data at the risk of not fitting it well to the 
population in which we are interested. 
◦ In fitting the crude oil prices in Example 8.2, we noted that the R2-

value will increase if we fit higher-order polynomial functions to 
the data.  While this might provide a better mathematical fit to the 
sample data, doing so can make it difficult to explain the 
phenomena rationally. 

 In multiple regression, if we add too many terms to the 
model, then the model may not adequately predict other 
values from the population. 

 Overfitting can be mitigated by using good logic, 
intuition, theory, and parsimony.



 Regression analysis requires numerical data.
 Categorical data can be included as independent 

variables, but must be coded numeric using 
dummy variables.

 For variables with 2 categories, code as 0 and 1.



 Employee Salaries provides data for 35 employees

 Predict Salary using Age and MBA (code as 
yes=1, no=0)



 Salary = 893.59 + 1044.15 × Age + 14767.23 × MBA
◦ If MBA = 0, salary = 893.59 + 1044 × Age 
◦ If MBA = 1, salary =15,660.82 + 1044 × Age



 An interaction occurs when the effect of one 
variable is dependent on another variable. 

 We can test for interactions by defining a new 
variable as the product of the two variables, 
X3 = X1 × X2 , and testing whether this 
variable is significant, leading to an 
alternative model.



 Define an interaction between 
Age and MBA and re-run the 
regression.

The MBA indicator is not significant; drop and re-run.



 Adjusted R2 increased slightly, and both age and the 
interaction term are significant. The final model is 

salary = 3,323.11 + 984.25 × age + 425.58 × MBA ×
age



 When a categorical variable has k > 2 levels, 
we need to add k - 1 additional variables to the 
model.



 The Excel file Surface 
Finish provides 
measurements of the 
surface finish of 35 parts 
produced on a lathe, 
along with the 
revolutions per minute 
(RPM) of the spindle 
and one of four types of 
cutting tools used.



 Because we have k = 4 levels of tool type, we will 
define a regression model of the form



 Add 3 columns to 
the data, one for 
each of the tool 
type variables



 Regression results

Surface finish = 24.49 + 0.098 RPM - 13.31 type B - 20.49 type C -
26.04 type D



 Curvilinear models may be appropriate when 
scatter charts or residual plots show nonlinear 
relationships.

 A second order polynomial might be used

 Here β1 represents the linear effect of X on Y and 
β2 represents the curvilinear effect.

 This model is linear in the β parameters so we can 
use linear regression methods.



 The U-shape of the residual plot (a  second-order 
polynomial trendline was fit to the residual data) 
suggests that a linear relationship is not appropriate.



 Add a variable for temperature squared. 
 The model is:
sales = 142,850 - 3,643.17 × temperature + 23.3 × temperature2



 The regression analysis tool in XLMiner has 
some advanced options not available in Excel’s 
Descriptive Statistics tool.

 Best-subsets regression evaluates either all 
possible regression models for a set of 
independent variables or the best subsets of 
models for a fixed number of independent 
variables.



 Best subsets evaluates models using a statistic called 
Cp, (the Bonferroni criterion). 
◦ Cp estimates the bias introduced in the estimates of the 

responses by having an underspecified model (a model with 
important predictors missing). 

◦ If Cp is much greater than  (the number of independent 
variables plus 1), there is substantial bias. The full model 
always has Cp = k + 1. 

◦ If all models except the full model have large Cps, it suggests 
that important predictor variables are missing. Models with a 
minimum value or having Cp less than or at least close to are 
good models to consider.



 Backward Elimination begins with all independent variables in the 
model and deletes one at a time until the best model is identified.  

 Forward Selection begins with a model having no independent 
variables and successively adds one at a time until no additional 
variable makes a significant contribution.  

 Stepwise Selection is similar to Forward Selection except that at 
each step, the procedure considers dropping variables that are not 
statistically significant.  

 Sequential Replacement replaces variables sequentially, retaining 
those that improve performance. These options might terminate with 
a different model.  

 Exhaustive Search looks at all combinations of variables to find the 
one with the best fit, but it can be time consuming for large numbers 
of variables.
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 Click the Predict button 
in the Data Mining group 
and choose Multiple 
Linear Regression. 

 Enter the range of the 
data (including headers)

 Move the appropriate 
variables to the boxes on 
the right. 



 Select the output options and 
check the Summary report box. 
Before clicking Finish, click on 
the Best subsets button.

 Select the best subsets option:



 View results from the “Output Navigator” links.



 Regression output (all variables)

 Best subsets results

If you click “Choose Subset,” XLMiner will create a new worksheet with the results for this model.



 Typically choose the model with the highest adjusted R2.
 Models with a minimum value of Cp or having Cp less 

than or at least close to k + 1 are good models to 
consider.

 RSS is the residual sum of squares, or the sum of 
squared deviations between the predicted probability of 
success and the actual value (1 or 0). 

 Probability is a quasi-hypothesis test that a given subset 
is acceptable; if this is less than 0.05, you can rule out 
that subset.



Log in to your Google Analytics dashboard here and click Sign in to Analytics. 

After you logged in, focus on the Acquisition tools on the left-hand side. Pick a channel 
with data (all traffic or social) and list two business recommendations on how to 
improve the acquisition and elaborate on them. You will be graded based on your 
familiarity with the tools and how you read/interpret the data.

https://marketingplatform.google.com/about/analytics/
mailto:albert.kalim@asbury.edu
mailto:albert.kalim@asbury.edu
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