


 Probability is the likelihood that an outcome 
occurs.  Probabilities are expressed as values 
between 0 and 1.

 An experiment is the process that results in an 
outcome.

 The outcome of an experiment is a result that 
we observe.

 The sample space is the collection of all 
possible outcomes of an experiment.



Probabilities may be defined from one of three 
perspectives:
 Classical definition: probabilities can be deduced 

from theoretical arguments
 Relative frequency definition: probabilities are 

based on empirical data
 Subjective definition: probabilities are based on 

judgment and experience



Roll 2 dice
 36 possible rolls (1,1), (1,2),…(6,5), (6,6)

 Probability = number of ways of rolling a number 
divided by 35; e.g., probability of a 3 is 2/36

Suppose two consumers try a new product.
 Four outcomes:

1. like, like 
2. like, dislike 
3. dislike, like 
4. dislike, dislike

 Probability at least one dislikes product = 3/4 



 Use relative frequencies as probabilities
 Probability a computer is repaired in 10 days = 0.076



 Label the n outcomes in a sample space as O1, O2, …, 
On, where Oi represents the ith outcome in the sample 
space. Let P(Oi)  be the probability associated with the 
outcome Oi.

 The probability associated with any outcome must be 
between 0 and 1.

0 ≤ P(Oi) ≤ 1  for each outcome Oi (5.1)
 The sum of the probabilities over all possible outcomes 

must be equal to 1.
P(O1) + P(O2) + … + P(On) = 1           (5.2)



 An event is a collection of one or more 
outcomes from a sample space.

 Rule 1. The probability of any event is the sum of 
the probabilities of the outcomes that comprise 
that event.



Consider the events: 
 Rolling 7 or 11 on two dice

Probability = 6/36 + 2/36 = 8/36.
 Repair a computer in 7 days or less

Probability = 
= O1 + O2 + O3 + O4 + O5 + O6 + O7
= 0 + 0 + 0 + 0 + .004 + .008 + .020 
= 0.032



 If A is any event, the complement of A, denoted 
Ac, consists of all outcomes in the sample space 
not in A.

 Rule 2. The probability of the complement of any 
event A is P(Ac) = 1 – P(A).



Dice example: 
 A = {7, 11}   

P(A) = 8/36
 Ac = {2, 3, 4, 5, 6, 8, 9, 10, 12}
 Using Rule 2:
P(Ac) = 1 − 8/36 = 28/36



 The union  of two events contains all outcomes 
that belong to either of the two events.
◦ If A and B are two events, the probability that some 

outcome in either A or B (that is, the union of A and B) 
occurs is denoted as P(A or B).

 Two events are mutually exclusive if they have no 
outcomes in common. 

 Rule 3. If events A and B are mutually exclusive, 
then P(A or B) = P(A) + P(B).



Dice Example:
 A = {7, 11}:  P(A) = 8/36
 B = {2, 3, 12}: P(B) = 4/36
 P(A or B) = Union of events A and B

= P(A) + P(B)
= 8/36 + 4/36 = 12/36



 The notation (A and B) represents the intersection of 
events A and B – that is, all outcomes belonging to 
both A  and B .

 Rule 4. If two events A and B are not mutually 
exclusive, then P(A or B) = P(A)+ P(B) - P(A and B).



Dice Example:
 A = {2, 3, 12}: P(A) = 4/36
 B = {even number} : P(B) = 18/36
 (A and B) = {2, 12}: P(A and B) = 2/36
 P(A or B) = P(A) + P(B)− P(A and B) 

= 4/36 + 18/36− 2/36
= 20/36



 The probability of the intersection of two events is 
called a joint probability.

 The probability of an event, irrespective of the 
outcome of the other joint event, is called a 
marginal probability.



 A sample of 100 individuals were asked to evaluate their preference for 
three new proposed energy drinks in a blind taste test. 

 The sample space consists of two types of outcomes corresponding to each 
individual: gender (F = female or M = male) and brand preference (B1, B2, 
or B3). 

 Define a new sample space consisting of the outcomes that reflect the 
different combinations of outcomes from these two sample spaces. 
◦ O1 = the respondent is female and prefers brand 1
◦ O2 = the respondent is female and prefers brand 2
◦ O3 = the respondent is female and prefers brand 3
◦ O4 = the respondent is male and prefers brand 1
◦ O5 = the respondent is male and prefers brand 2
◦ O6 = the respondent is male and prefers brand 3

 The probability of each of these events is the intersection of the gender and 
brand preference event. For example, P(O1) = P(F and B1) 



 Energy Drink Survey
 The joint probabilities of gender and brand preference 

are calculated by dividing the number of respondents 
corresponding to each of the six outcomes listed above 
by the total number of respondents, 100. 
◦ E.g., P(F and B1) = P(O1) = 9/100 = 0.09 

Joint 
probabilities



 The marginal probabilities for gender and brand 
preference are calculated by adding the joint 
probabilities across the rows and columns
◦ E.g., the event F, (respondent is female) is comprised of the 

outcomes O1, O2, and O3, and therefore P(F) = P(F and B1) +   
P(F and B2) + P(F and B3) = 0.37 

Marginal 
probabilities



 Calculations of marginal probabilities leads to the 
following probability rule:

 Rule 5. If event A is comprised of the outcomes 
{A1, A2, …, An} and event B is comprised of the 
outcomes {B1, B2, …, Bn}, then 

P(Ai) = P(Ai and B1) + P(Ai and B2) + … + P(Ai and Bn) 



 Events F and M are mutually exclusive, as are events B1, B2, and B3
since a respondent may be only male or female and prefer exactly 
one of the three brands. We can use Rule 3 to find, for example, 
P(B1 or B2) = 0.34 + 0.23 = 0.57. 

 Events F and B1, however, are not mutually exclusive because a 
respondent can be both female and prefer brand 1. Therefore, using 
Rule 4, we have P(F or B1) = P(F) + P(B1) – P(F and B1) = 0.37 + 
0.34 – 0.09 = 0.62.



 Conditional probability is the probability of 
occurrence of one event A, given that another 
event B is known to be true or has already 
occurred.



 Suppose we know a respondent is male.  What is the probability that 
he prefers Brand 1?

 Using cross-tabulation: Of 63 males, 25 prefer Brand 1, so the 
probability of preferring Brand 1 given that a respondent is male = 
25/63

 Using joint probability table: divide the joint probability 0.25 (the 
probability that the respondent is male and prefers brand 1) by the 
marginal probability 0.63 (the probability that the respondent is male).



 Apple Purchase History
 The PivotTable shows the count of the 

type of second purchase given that 
each product was purchased first.

 Probability of purchasing an
iPad given that a customer already 
purchased an iMac = 2/13



 The conditional probability of an event A  given 
that event B  is known to have occurred is

 We read the notation P(A|B) as “the probability of 
A given B.”



 P(B1|M) = P(B1 and M)/ P(M) = (0.25)/(0.63) = 0.397

 P(B1|F) = P(B1 and F)/ P(F) = (0.09)/(0.37) = 0.243

 Summary of conditional probabilities:

 Applications in marketing and advertising.



 P(A and B) =  P(A | B) P(B)
 P(B and A) =  P(B | A) P(A)
◦ Note: P(A and B) = P(B and A) 

 Multiplication law of probability:



 Suppose B1, B2, . . . , Bn are mutually exclusive 
events whose union comprises the entire sample 
space. Then



 “Texas Hold ‘Em” Poker
 Probability of pocket aces (two aces in hand)
 A1 = Ace on first card; A2 = Ace on second card
 P(A1 and A2) = P(A2|A1) P(A1)

= (3/51) (4/52)
= 0.004525



 Two events A and B are independent if 
P(A | B) = P(A).

 Energy Drink Survey example: the probability of 
preferring a brand depends on gender. 

 Thus, we may say that brand preference and 
gender are not independent.



 Are Gender and Brand Preference Independent?
 P(B1) = 0.34

 P(B1|M) = 0.397

 Because 0.397 ≠ 0.34, Gender and Brand Preference 
are not independent.  



 If two events are independent, then we can 
simplify the multiplication law of probability in 
equation (5.4)

 by substituting P(A) for P(A | B):



Dice Rolls:
 Rolling pairs of dice are independent events since 

they do not depend on the previous rolls.
 A = {roll a sum of 6 on first roll}
 B = {roll a sum of 2, 3, or 12 on second roll}
 Using formula (5.5): P(A and B) = P(A) P(B)

= (5/36) (4/36) = 0.0154



 A random variable is a numerical description of 
the outcome of an experiment.

 A discrete random variable is one for which the 
number of possible outcomes can be counted.

 A continuous random variable has outcomes 
over one or more continuous intervals of real 
numbers.



Examples of discrete random variables:
 outcomes of dice rolls
 whether a customer likes or dislikes a product
 number of hits on a Web site link today
Examples of continuous random variables:
 weekly change in DJIA
 daily temperature
 time between machine failures 



 A probability distribution is a characterization of 
the possible values that a random variable may 
assume along with the probability of assuming 
these values. 

 We may develop a probability distribution using 
any one of the three perspectives of probability: 
classical, relative frequency, and subjective.





 We can calculate the relative frequencies from a sample 
of empirical data to develop a probability distribution. 
Because this is based on sample data, we usually call 
this an empirical probability distribution. 

 An empirical probability distribution is an approximation 
of the probability distribution of the associated random 
variable, whereas the probability distribution of a random 
variable, such as one derived from counting arguments, 
is a theoretical model of the random variable.





 We could simply specify a probability distribution 
using subjective values and expert judgment. 

 This is often done in creating decision models for 
phenomena for which we have no historical data.



 Distribution of an expert’s assessment of how the 
DJIA might change next year.



 For a discrete random variable X, the probability 
distribution of the discrete outcomes is called a 
probability mass function and is denoted by a 
mathematical function, f(x).  
◦ The symbol xi represents the ith value of the random 

variable X and f(xi) is the probability.
 Properties:
◦ the probability of each outcome must be between 0 and 1 
◦ the sum of all probabilities must add to 1



 xi = values of the random variable X, which 
represents sum of the rolls of two dice
◦ x1 = 2, x2 = 3, …, x10 = 11, x11 = 12  

 f(x1) = 1/36 = 0.0278; f(x2) = 2/36 = 0.0556, etc.



 A cumulative distribution function, F(x), specifies 
the probability that the random variable X
assumes a value less than or equal to  a specified 
value, x; that is,

F(x) = P(X ≤ x)



 Probability of rolling a 6 or less = F(6) = 0.1667
 Probability of rolling between 4 and 8:
= P(4 ≤ X ≤ 8) = P(3 < X ≤ 8) = P(X ≤ 8) – P(X ≤ 3)
= 0.7222 – 0.0833 = 0.6389



 The expected value  of a random variable 
corresponds to the notion of the mean, or 
average, for a sample. 

 For a discrete random variable X, the expected 
value, denoted E[X], is the weighted average of all 
possible outcomes, where the weights are the 
probabilities:



 Rolling two dice
◦ E[X] = 2(0.0278) + 3(0.0556) + 4(0.0833) + 5(0.1111) + 

6(0.1389) + 7(0.1667) + 8(0.1389) + 9(0.1111) + 
10(0.0833) + 11(0.0556) + 12(0.0278) = 7



The Apprentice
 Teams were required to select an artist (mainstream or avant-garde) 

and sell their art for the most money possible. A back-of-the-
envelope expected value calculation would have easily predicted 
the winner.

Deal or No Deal
 Contestant had 5 briefcases left with $100, $400, $1000, $50,000 or 

$300,000 in them.
 Expected value of briefcases is $70,300.
 Banker offered contestant $80,000 to quit, which was higher than 

the expected value.  The probability of choosing the $300,000 
briefcase was only 0.2, so the decision should have been easy to 
make.



 The expected value is a “long-run average” and is 
appropriate for decisions that occur on a repeated 
basis. 

 For one-time decisions, however, you need to 
consider the downside risk and the upside 
potential of the decision.



 Cost of raffle ticket is $50
 1000 raffle tickets are sold.
 Winning prize is $25,000
 E[X] = −$25
 If you played this game repeatedly over the long run, you 

would lose an average of $25.00 each time you play. 
 For any one game, you would either lose $50 or win 

$24,950.
◦ Is the risk of losing $50 worth the potential of winning $24,950?



 Full and discount airfares are available for a flight.
 Full-fare ticket costs $560
 Discount ticket costs $400
 X = ticket price paid
 p = 0.75 (the probability of selling a full-fare ticket)
 E[X] = 0.75($560) + 0.25(0) = $420

 The airline should not discount full-fare tickets 
because the expected value of a full-fare ticket is 
greater than the cost of a discount ticket.

 Break-even point: $400 = p($560) or p = 0.714



 The variance, Var[X ], of a discrete random 
variable X is a weighted average of the squared 
deviations from the expected value:



 Rolling two dice



 Two possible outcomes, “success” and “failure,” each 
with a constant probability of occurrence; p is the 
probability of a success and 1 – p is the probability of a 
failure

 Typically, x = 1 represents “success” and x = 0 
represents “failure” 

 Probability mass function:

 E[X] = p
 Var[X] = p(1 − p)



 The Bernoulli distribution can be used to model whether 
an individual responds positively (x = 1), or negatively   
(x = 0) to a telemarketing promotion.

 For example, if you estimate that 20% of customers 
contacted will make a purchase, the probability 
distribution that describes whether or not a particular 
individual makes a purchase is Bernoulli with p = 0.2



 Models n independent replications of a Bernoulli experiment, each 
with a probability p of success.
◦ X represents the number of successes in these n experiments

 Probability mass function:

 The number of ways of choosing x distinct items from a group of n
items and is

where n! (n factorial) = n(n - 1)(n - 2) . . . (2)(1), and 0! is defined as 1.
 Expected value = np; variance = np(1 – p) 



 Suppose 10 individuals receive a telemarking promotion. Each 
individual has a 0.2 probability of making a purchase. Find the 
probability that exactly 3 of the 10 individuals make a purchase.

 The probability distribution that x individuals out of 10 calls will make 
a purchase is:

 Excel function:  
=BINOM.DIST(number_s, trials, probability_s, cumulative)

 If cumulative is set to TRUE, then this function will provide 
cumulative probabilities; otherwise the default is FALSE, and it 
provides values of the probability mass function, f(x).



 The probability that exactly 3 of 10 individuals will make 
a purchase is P(x = 3): =BINOM.DIST(3,10,0.2,TRUE) = 
0.20133

 The probability that 3 or fewer of 10 individuals will make 
a purchase is P(x ≤ 3): =BINOM.DIST(3,10,0.2,FALSE) 
= 0.87913



 The binomial distribution is symmetric when 
p = 0.5; positively skewed when p < 0.5, 
and negatively skewed when p > 0.5. 

Example of 
negatively-skewed 
distribution



 Models the number of occurrences in some unit of 
measure (often time or distance).

 There is no limit on the number of occurrences.
 The average number of occurrence per unit is a constant 

denoted as λ.
 Probability mass function:

 Expected value = λ; variance = λ



 Suppose the average number of customers arriving at a 
Subway restaurant during lunch hour is λ =12 per hour.

 The probability that exactly x customers arrive during the 
hour is given by the Poisson distribution with a mean of 
12.

 Excel function: =POISSON.DIST(x, mean, cumulative)



 With λ = 12, the probability that X = 1 is 
=POISSON.DIST(A7,$B$3,FALSE) = 0.00007

 The probability that X ≤ 4 is 
=POISSON.DIST(A10,$B$3,TRUE) = 0.00760



 A probability density function is a mathematical 
function that characterizes a continuous random variable



 Properties
 f(x) ≥ 0 for all values of x
 Total area under the density function equals 1.
 P(X = x) = 0
 Probabilities are only defined over intervals.
 P(a ≤ X ≤ b) is the area under the density function between 

a and b.



 The uniform distribution characterizes a continuous 
random variable for which all outcomes between a 
minimum (a) and a maximum (b) are equally likely.

 Density function:

 Cumulative distribution function:

 Expected value = (a + b)/2; variance = (b – a)2/12



 Sales revenue for a product varies uniformly each week between 
$1000 and $2000.

 Probability that sales revenue will be less than x = $1,300.
◦ F(1,300) = (1,300 - 1,000) / (2,000 - 1,000) = 0.30

 Probability that revenue will be between $1,500 and $1,700.
◦ P(1,500 ≤ X ≤ 1,700) = P(X ≤ 1,700) - P(X ≤ 1,500) = F(1,700) - F(1,500) 

= F(1,700) - F(1,500) = 0.7 – 0.5 = 0.2



 A variation of the uniform distribution is one for 
which the random variable is restricted to integer 
values between a and b (also integers); this is 
called a discrete uniform distribution.
◦ Example: roll of a single die. Each of the numbers 1 

through 6 have a 1/6 probability of occurrence.



 f(x) is a bell-shaped curve
 Characterized by 2 parameters:

µ (mean)
σ (standard deviation)

 Properties
1. Symmetric
2. Mean = Median = Mode
3. Range of X is unbounded
4. Empirical rules apply



 Excel function:
=NORM.DIST(x, mean, standard_deviation, cumulative).
◦ NORM.DIST(x, mean, standard_deviation, TRUE) calculates the 

cumulative probability
◦ If cumulative  is set to FALSE, the function simply calculates the 

value of the density function f(x), which has little practical 
application.



 The distribution for customer demand (units per month) is normal 
with mean = 750 and standard deviation = 100

 Find the probability that demand will be:
1. at most 900 units/month
2. exceed 700 units/month
3. be between 700 and 900 units/month



 Probability that demand will be at most 900 units, 
or P(X ≤ 900):
◦ =NORM.DIST(900,750,100,TRUE) = 0.9332.



 Probability that demand will exceed 700 units, or P(X > 
700).
◦ =1-NORM.DIST(700,750,100,TRUE) = 1 - 0.3085 = 0.6915



 Probability that demand will be between 700 and 900, or 
P(700 < X < 900):
◦ =NORM.DIST(900,750,100,TRUE) -

NORM.DIST(700,750,100,TRUE) =0.9332 - 0.3085 = 0.6247



 Normal Inverse function:
=NORM.INV(probability, mean, stdev) 
provides the x value with F(x) = probability



 What level of demand would be exceeded at most 
10% of the time?

 Find x such that F(x) = 0.90:
= NORM.INV(0.90, 750, 100) = 878.155



 A standard normal distribution is a normal distribution 
with a mean of 0 and standard deviation of 1.
◦ A standard normal random variable is denoted by Z.
◦ The scale along the z-axis represents the number of standard 

deviations from the mean of zero. 
◦ The Excel function =NORM.S.DIST(z) finds probabilities for the 

standard normal distribution.



 Verify the empirical rules using Excel.
 Example: The probability within one standard deviation 

of the mean is P(-1 < Z < 1) 
= NORMS.DIST(1) – NORMS.DIST(-1)
= 0.84134 – 0.15866
= 0.6827
~ 68%



 Table 1 of Appendix A

 We may compute probabilities for any normal random 
variable X having a mean µ and standard deviation σ by 
converting it to a standard normal random variable Z:



 From Example 5.30, what is the 
probability that demand will be at 
least 900 units/month?

 z = (900 − 750)/100 = 1.50
 Using Table 1 in Appendix A, we 

find: 
 P(X < 900) = P(Z < 1.50) = 0.93319



 Models the time between randomly occurring events 
 Density function:

 Cumulative distribution function:

 Mean = µ = 1/λ
 Excel function:
◦ =EXPON.DIST(x, lambda, cumulative)

If the number of events occurring 
during  an interval of time has a 
Poisson distribution, then the 
time between events is 
exponentially distributed.



 The mean time to failure of a critical engine component is µ = 8,000 
hours. What is the probability of failing before 5000 hours?

 P(X < x) =EXPON.DIST(x, lambda, cumulative)

 λ = 1/8000 

 P(X < 5000) =EXPON.DIST(5000, 1/8000, TRUE)
= 0.4647



 Triangular Distribution
 Lognormal Distribution
 Beta Distribution



 A random number is one that is uniformly 
distributed between 0 to 1. 
 Excel function: =RAND( )



Probability distribution Intervals for random sampling

1. Generate a random number
2. Find the interval in which it falls
3. Use the associated outcome as the sample



 Sample from the probability distribution of predicted 
change in the Dow Jones Industrial Average index

 Compute F(x) and assign intervals to outcomes
 Generate random numbers using the Excel function 

=RAND( )
◦ E.g. Cell J2: =VLOOKUP(I2,$E2:$G$10,3)



 A value randomly generated from a specified probability 
distribution is called a random variate.
◦ Example: Uniform distribution

 Analysis Toolpak Random Number Generation Tool
◦ Can sample from uniform, normal, Bernoulli, binomial, Poisson, 

patterned, and discrete distributions. 
◦ Can also specify a random number seed – a value from which a 

stream of random numbers is generated. By specifying the same 
seed, you can produce the same random numbers at a later time.



 Generate 100 outcomes 
from a Poisson distribution 
with a mean of 12
◦ Number of Variables = 1.
◦ Number of Random Numbers 

= 100
◦ Distribution = Poisson
◦ Dialog changes and prompts 

you to enter Lambda (mean 
of Poisson) = 12



(Histogram created manually)



 Normal:  =NORM.INV(RAND( ), mean, stdev)

 Standard normal: =NORM.S.INV(RAND( ))



 In finance, one way of evaluating capital budgeting 
projects is to compute a profitability index: PI = PV / I, 
 PV is the present value of future cash flows 
 I is the initial investment

 What is the probability distribution of PI when PV is 
estimated to be normally distributed with a mean of $12 
million and a standard deviation of $2.5 million, and the 
initial investment is also estimated to be normal with a 
mean of $3.0 million and standard deviation of $0.8 
million.?



 Column F:
=NORM.INV(RAND( ), 12, 2.5)

 Column G:  
=NORM.INV(RAND( ), 3, 0.8)



 Analytic Solver Platform provides Excel functions 
to generate random variates for many distributions



 An energy company was considering offering a new product and 
needed to estimate the growth in PC ownership.

 Using the best data and information available, they determined that 
the minimum growth rate was 5.0%, the most likely value was 7.7%, 
and the maximum value was 10.0% (a triangular distribution).
◦ A portion of 500 samples that were generated using the function 

PsiTriangular(5%, 7.7%, 10%):



 Using sample data may limit our ability to predict 
uncertain events that may occur because potential 
values outside the range of the sample data are not 
included.

 A better approach is to identify the underlying probability 
distribution from which sample data come by “fitting” a 
theoretical distribution to the data and verifying the 
goodness of fit statistically.
◦ Examine a histogram for clues about the distribution’s shape
◦ Look at summary statistics such as the mean, median, standard 

deviation, coefficient of variation, and skewness



 Sample data on passenger demand for 25 flights

◦ The histogram shows a relatively symmetric distribution. The 
mean, median, and mode are all similar, although there is 
moderate skewness.  A normal distribution is not unreasonable.



 Sample data on service times for 812 passengers at an 
airport’s ticketing counter

◦ It is not clear what the distribution might be. It does not appear to 
be exponential, but it might be lognormal or another distribution.



 A better approach that simply visually examining a 
histogram and summary statistics is to analytically fit the 
data to the best type of probability distribution.

 Three statistics measure goodness of fit:
◦ Chi-square (need at least 50 data points)
◦ Kolmogorov-Smirnov (works well for small samples)
◦ Anderson-Darling (puts more weight on the differences between 

the tails of the distributions)
 Analytic Solver Platform has the capability of fitting a 

probability distribution to data.



1. Highlight the data
Analytic Solver Platform >       
Tools > Fit

2. Fit Options dialog
Type: Continuous
Test: Kolmorgov-Smirnov
Click Fit button



 The best-fitting distribution is called an Erlang
distribution.



Log in to your Google Analytics dashboard here and click Sign in to Analytics. 

After you logged in, focus on the Audience tools on the left hand side. Tell me as much 
as you can any information about the audience (visitors to this website) for the 
month of April 2022. You will be graded based on your familiarity with the tools and 
how you read/interpret the data.

https://marketingplatform.google.com/about/analytics/
mailto:albert.kalim@asbury.edu
mailto:albert.kalim@asbury.edu
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